Update README.md
Browse files
README.md
CHANGED
@@ -24,6 +24,24 @@ It achieves the following results on the evaluation set:
|
|
24 |
|
25 |
More information needed
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
## Intended uses & limitations
|
28 |
|
29 |
More information needed
|
@@ -62,56 +80,3 @@ The following hyperparameters were used during training:
|
|
62 |
- Pytorch 2.3.1+cu121
|
63 |
- Datasets 2.20.0
|
64 |
- Tokenizers 0.19.1
|
65 |
-
|
66 |
-
### How to use
|
67 |
-
|
68 |
-
You can use this model directly with a pipeline for masked language modeling:
|
69 |
-
|
70 |
-
```python
|
71 |
-
>>> from transformers import pipeline
|
72 |
-
>>> unmasker = pipeline('fill-mask', model='bert-base-cased')
|
73 |
-
>>> unmasker("Hello I'm a [MASK] model.")
|
74 |
-
|
75 |
-
[{'sequence': "[CLS] Hello I'm a fashion model. [SEP]",
|
76 |
-
'score': 0.09019174426794052,
|
77 |
-
'token': 4633,
|
78 |
-
'token_str': 'fashion'},
|
79 |
-
{'sequence': "[CLS] Hello I'm a new model. [SEP]",
|
80 |
-
'score': 0.06349995732307434,
|
81 |
-
'token': 1207,
|
82 |
-
'token_str': 'new'},
|
83 |
-
{'sequence': "[CLS] Hello I'm a male model. [SEP]",
|
84 |
-
'score': 0.06228214129805565,
|
85 |
-
'token': 2581,
|
86 |
-
'token_str': 'male'},
|
87 |
-
{'sequence': "[CLS] Hello I'm a professional model. [SEP]",
|
88 |
-
'score': 0.0441727414727211,
|
89 |
-
'token': 1848,
|
90 |
-
'token_str': 'professional'},
|
91 |
-
{'sequence': "[CLS] Hello I'm a super model. [SEP]",
|
92 |
-
'score': 0.03326151892542839,
|
93 |
-
'token': 7688,
|
94 |
-
'token_str': 'super'}]
|
95 |
-
```
|
96 |
-
|
97 |
-
Here is how to use this model to get the features of a given text in PyTorch:
|
98 |
-
|
99 |
-
```python
|
100 |
-
from transformers import BertTokenizer, BertModel
|
101 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
102 |
-
model = BertModel.from_pretrained("bert-base-cased")
|
103 |
-
text = "Replace me by any text you'd like."
|
104 |
-
encoded_input = tokenizer(text, return_tensors='pt')
|
105 |
-
output = model(**encoded_input)
|
106 |
-
```
|
107 |
-
|
108 |
-
and in TensorFlow:
|
109 |
-
|
110 |
-
```python
|
111 |
-
from transformers import BertTokenizer, TFBertModel
|
112 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
113 |
-
model = TFBertModel.from_pretrained("bert-base-cased")
|
114 |
-
text = "Replace me by any text you'd like."
|
115 |
-
encoded_input = tokenizer(text, return_tensors='tf')
|
116 |
-
output = model(encoded_input)
|
117 |
-
```
|
|
|
24 |
|
25 |
More information needed
|
26 |
|
27 |
+
## How to use
|
28 |
+
|
29 |
+
You can use this model directly with a pipeline for text classification:
|
30 |
+
|
31 |
+
```python
|
32 |
+
>>> from transformers import pipeline
|
33 |
+
>>> import torch
|
34 |
+
>>> bert_ckpt = "transformersbook/bert-base-uncased-finetuned-clinc"
|
35 |
+
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
>>> pipe = pipeline("text-classification", model=bert_ckpt, device=device)
|
37 |
+
|
38 |
+
|
39 |
+
>>> query = """Hey, I'd like to rent a vehicle from Nov 1st to Nov 15th in Paris and I need a 15 passenger van"""
|
40 |
+
>>> print(pipe(query))
|
41 |
+
|
42 |
+
[{'label': 'car_rental', 'score': 0.5490034222602844}]
|
43 |
+
```
|
44 |
+
|
45 |
## Intended uses & limitations
|
46 |
|
47 |
More information needed
|
|
|
80 |
- Pytorch 2.3.1+cu121
|
81 |
- Datasets 2.20.0
|
82 |
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|