File size: 2,096 Bytes
5bec1bf
492c08e
 
 
 
 
 
 
 
 
 
 
 
5bec1bf
 
492c08e
 
5bec1bf
492c08e
5bec1bf
492c08e
 
 
 
 
 
 
5bec1bf
492c08e
5bec1bf
492c08e
5bec1bf
492c08e
5bec1bf
492c08e
5bec1bf
492c08e
5bec1bf
492c08e
5bec1bf
492c08e
5bec1bf
492c08e
5bec1bf
492c08e
 
 
 
 
 
 
 
5bec1bf
492c08e
5bec1bf
492c08e
 
 
 
 
 
 
 
5bec1bf
 
492c08e
5bec1bf
492c08e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: hallisky/sarcasm-classifier-gpt4-data
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: taskA-hallisky-sarcasm-classifier-gpt4-data
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# taskA-hallisky-sarcasm-classifier-gpt4-data

This model is a fine-tuned version of [hallisky/sarcasm-classifier-gpt4-data](https://huggingface.co/hallisky/sarcasm-classifier-gpt4-data) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9103
- Accuracy: 0.7722
- Precision: 0.5525
- Recall: 0.4697
- F1: 0.5078

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5499        | 0.7752 | 500  | 0.6671          | 0.7599   | 0.5307    | 0.3487 | 0.4209 |
| 0.4267        | 1.5504 | 1000 | 0.6445          | 0.7664   | 0.5441    | 0.4092 | 0.4671 |
| 0.3895        | 2.3256 | 1500 | 0.7337          | 0.7851   | 0.6522    | 0.3026 | 0.4134 |
| 0.3492        | 3.1008 | 2000 | 0.6803          | 0.7823   | 0.5830    | 0.4553 | 0.5113 |
| 0.3251        | 3.8760 | 2500 | 0.7877          | 0.7621   | 0.5251    | 0.5130 | 0.5190 |
| 0.308         | 4.6512 | 3000 | 0.9103          | 0.7722   | 0.5525    | 0.4697 | 0.5078 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1