Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 270.57 +/- 10.85
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff7b3cfc8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff7b3cfc950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff7b3cfc9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff7b3cfca70>", "_build": "<function ActorCriticPolicy._build at 0x7ff7b3cfcb00>", "forward": "<function ActorCriticPolicy.forward at 0x7ff7b3cfcb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff7b3cfcc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff7b3cfccb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff7b3cfcd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff7b3cfcdd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff7b3cfce60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff7b3d514b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652635673.139628, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM372T2aCic/eKNRPUCrBr/XHR4+eQ45vQAAAAAAAAAAZp86vSnwI7oABui5fBzutbfkt7oiGwc5AACAPwAAgD+add+8j6IlupIuKjnZwJm2FeEXO9IhSLgAAIA/AACAP838FLwUuoC6T1Cmubx4aLMwrja7h7y/OAAAgD8AAIA/zW7DvEjjoLqZAIu2TpyXsZYnEroNv6Q1AACAPwAAgD8zAY29e5aauij59beemf+yZAq7Op0SDjcAAIA/AACAPzNDYbzD8Xy6eilVOoB/IjW/mo26cj94uQAAgD8AAIA/ZqYCPOE4l7pl3Vi6zsCaNTnuL7oKhHo5AACAPwAAgD9zyLe9hWP8ubiX3bniMcu1o26yuxlEAzkAAIA/AACAPwCQsb0UTv64oUaSuhrEwrYIyR88s0uvOQAAgD8AAIA/88exvfbEL7peWoQ6jS0GN/cjl7pqb5G5AACAPwAAgD/mfWa99oROuk3jazYzAwQyTdhFO6O6i7UAAIA/AACAP5pz2Dz2rHG6WztxOoA9u7TsOkY6BEmNuQAAgD8AAIA/gOuxva7Rpbq8zZc7dRULOe0/q7pKIya6AACAPwAAgD8zNVi9e6auutq90TqXzu42joZsueXn1jUAAIA/AACAP5oqKb0peB26jCCYO00VNLUOEyc6P1QetAAAgD8AAIA/AHUYvXt0xjktYS63nCIRspl4pbu1IFA2AACAPwAAgD/N5OI79lx2uraRnTYA2IkxqO3Yuq0MubUAAIA/AACAP2Zz7TxcPye6lmFeOhtwlTVZW2g7UmCBuQAAgD8AAIA/82+DPb+xtj/d0Fc+A1nAvtDEFT6VvXE9AAAAAAAAAABmnBe+Eo+MPx379b5MnB6/e/Q1vhbVK74AAAAAAAAAAGYOpTt78qq6Chv5uGZ0JjMt46K5KpwOOAAAgD8AAIA/jcnBPVy7hD9+bMY+KrhLv8O0Dz7oDzc+AAAAAAAAAACzvDs9XMMJuhVtm7rHnC+2B0TOOuEUtTkAAIA/AACAP2Z5pbwf9ZW5B2qOuS4Sk7QR7Sc737ikOAAAgD8AAIA/My0RvMNdNboGL+g64LzBNQCVDjv5IQa6AAAAAAAAgD/gMyY+/VMnPgYPo75ladS+GWiIvTwEIL4AAAAAAAAAACbvpb32fBq6zimeumZ4gDQsXJS71g25OQAAgD8AAIA/ZjgwPOEoiboyUiQ73kFhOJmZL7qZ1MK5AACAPwAAgD/N3Mi8j049ujMBm7qgQAe2hdNAOx4PtTkAAIA/AACAP+aBsr0pnAW4CBOSuocD7bUD3Y87a8qtOQAAgD8AAIA/mrAwPQQiED4Q7u6+xFh5vrKbEr6T/t+9AAAAAAAAAADNrbK8XJsHuoSqk7ps1F+2vggYuXm6qDkAAAAAAAAAAGbqi7327Hy652UsunQVyzXpClM6Ew1JOQAAgD8AAIA/MyEYPY82Urp6w4w512yRNEDK9zmJzKW4AACAPwAAgD+zPUE9SB+Suoh9PThR2DQz/ZwIOV2KW7cAAIA/AACAP83QGb2MS3A+wyWcvXHR/76qXJe9y3h6vQAAAAAAAAAAZuq4PI/6G7riBX25baRwtGjodzuguZY4AACAPwAAgD/NDu+8UqC+uY6pgrpvWtA0XNLfu/oLmjkAAIA/AACAPxoSJb17SoO6qndcOyJpvDVpuYU66jJ7ugAAgD8AAIA/ZrcBvXtqq7peqAG55nn4s2qw0bgxpRQ4AACAPwAAgD8awXU99swVuspTibtF8IU4RL2POg11cjkAAIA/AACAP5pXVjz2XDS6tYKluk2P/bVXAqs7X7zCOQAAgD8AAIA/TXRhvfYUdrqjXum5GmFJtTODrDqe3AQ5AACAPwAAgD8AKNC8w11iuuOOHbuAQUs2dK36ut2eODoAAIA/AACAP83zhb1SQKC5qmC0O+OK7zez0Jw6JsMEtQAAgD8AAIA/zaxBPSkAKboB8Q43ifDnsHqzqrtGLii2AACAPwAAgD/mnWq99hgqulDFxrrAfxm1Pr0ruw746DkAAIA/AACAP41aiz17eqe6GK19uMvebLM/oOS39oWRNwAAgD8AAIA/AABQOvaUI7r/Ea86V4buNX7B2bpx4cu5AACAPwAAgD+Aylu94aSdurpHdjlp52w0uIqeOnoXjrgAAIA/AACAPzPxyDwze60/lPfDPmw69b7DbsK6e4TOPQAAAAAAAAAAZrxKPMNBUbqWqWq6Qo9LtdYs0rnQ0Ik5AACAPwAAgD8zliK9SCGBuhh1KDgz6cIzHeN0O23gP7cAAIA/AACAPzMz3rx5hrU/+bkFv5f4MTxwMjA8igBAvQAAAAAAAAAADTmVvfZ4M7pFEn25yYi/s+UCubs39pQ4AACAPwAAgD8mGoc9xLWqP39DIT/3fOy+sgEDvfc3jT0AAAAAAAAAAO3MB77S1a67y1lEu7p867gifQM9ED99OgAAgD8AAIA/ACsPvVBMvT99oai+c6M6Pqpb+7zP1AS+AAAAAAAAAABmftk7e/KMuoApfrerPUiyak6YugjykjYAAIA/AACAP40njj5R5uc+8pORvm7M9r6PfRA+rpqhvAAAAAAAAAAAAHZjvRQokbrlg+u6DPMDtpjwjDnDowc6AACAPwAAgD8abXW9PVpCubrbqztiurc3fPK4OiKqmboAAIA/AACAP5q5RL0fNdS5NMk8ujzP0rROxCE7G51cOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImNu93KcmckCUhpRSlIwBbJRNJwGMAXSUR0CpnkQOOKfndX2UKGgGaAloD0MIrTHohFDzckCUhpRSlGgVTdgDaBZHQKmi62kzoEB1fZQoaAZoCWgPQwgEWrqCbQtjQJSGlFKUaBVN6ANoFkdAqaM3kLhJiHV9lChoBmgJaA9DCBVxOsmWYnFAlIaUUpRoFU01A2gWR0Cpo1DNIK+jdX2UKGgGaAloD0MIdhppqTzHYkCUhpRSlGgVTegDaBZHQKmjslyimEZ1fZQoaAZoCWgPQwgEHa1qScdlQJSGlFKUaBVN6ANoFkdAqaR3nuAqeHV9lChoBmgJaA9DCJlho6zfNmRAlIaUUpRoFU3oA2gWR0CppvMny/bkdX2UKGgGaAloD0MIqFKzB1qqakCUhpRSlGgVTegDaBZHQKmnDCu2ZzB1fZQoaAZoCWgPQwg9D+7OGqdyQJSGlFKUaBVNJwJoFkdAqacjamGdqnV9lChoBmgJaA9DCNJu9DEfEHJAlIaUUpRoFU2CAWgWR0CppzqrzXjEdX2UKGgGaAloD0MI+SzPg7uZZkCUhpRSlGgVTegDaBZHQKmnUfjjrAx1fZQoaAZoCWgPQwhoeLMGL9JwQJSGlFKUaBVNBQFoFkdAqad+KKpDNXV9lChoBmgJaA9DCHLcKR1s4nJAlIaUUpRoFU3QAWgWR0CpqAaAFxGUdX2UKGgGaAloD0MIJlZGI5+pSUCUhpRSlGgVS4ZoFkdAqagdC5VfeHV9lChoBmgJaA9DCJ7r+3BQdnFAlIaUUpRoFUvnaBZHQKmogCdz4lB1fZQoaAZoCWgPQwjvcDs0rLNwQJSGlFKUaBVL+2gWR0CpqJhhYvFndX2UKGgGaAloD0MINKFJYsmiZECUhpRSlGgVTegDaBZHQKmoxpwjt5V1fZQoaAZoCWgPQwjGUiRfCdVhQJSGlFKUaBVN6ANoFkdAqamCj59E1HV9lChoBmgJaA9DCFd8Q+Gz6WVAlIaUUpRoFU3oA2gWR0Cpqcx4QjD9dX2UKGgGaAloD0MIT+j1J/Hdc0CUhpRSlGgVTQMCaBZHQKmp59Brvb51fZQoaAZoCWgPQwgmj6flhzllQJSGlFKUaBVN6ANoFkdAqap8T37DVHV9lChoBmgJaA9DCEg3wqKiYHFAlIaUUpRoFU1zAWgWR0CpqsxUNrj6dX2UKGgGaAloD0MIXTXPEfmbcECUhpRSlGgVTWMCaBZHQKmrX9QXQ+l1fZQoaAZoCWgPQwgOSS2UzJtlQJSGlFKUaBVN6ANoFkdAqa1D9GZuynV9lChoBmgJaA9DCNDTgEESpnBAlIaUUpRoFUv/aBZHQKmuRzK9wm51fZQoaAZoCWgPQwjO4sXCEPJuQJSGlFKUaBVN2AFoFkdAqa7CeCkGinV9lChoBmgJaA9DCCh9IeQ8VGVAlIaUUpRoFU3oA2gWR0Cpr4TEit7sdX2UKGgGaAloD0MI3Xh3ZGyTckCUhpRSlGgVTSsCaBZHQKmv/RKpT/B1fZQoaAZoCWgPQwhDHsGNFFNzQJSGlFKUaBVNogFoFkdAqbEA6fapP3V9lChoBmgJaA9DCHKKjuRyc2ZAlIaUUpRoFU3oA2gWR0Cpss8/D+BIdX2UKGgGaAloD0MIv5gtWRXNZECUhpRSlGgVTegDaBZHQKmzijgQ6IZ1fZQoaAZoCWgPQwjkvP+PU95xQJSGlFKUaBVNfANoFkdAqbOKLyc0+HV9lChoBmgJaA9DCKXd6GM+F25AlIaUUpRoFU2EAWgWR0Cps6EELYwqdX2UKGgGaAloD0MIcSGP4MYHZ0CUhpRSlGgVTegDaBZHQKmz2WCVbA11fZQoaAZoCWgPQwjP2QJCa4tyQJSGlFKUaBVNtwJoFkdAqbPx37k4m3V9lChoBmgJaA9DCJawNsbOXHBAlIaUUpRoFU2QA2gWR0CptBgeJYT1dX2UKGgGaAloD0MISkVj7W/GZkCUhpRSlGgVTegDaBZHQKm1ZcJMQEp1fZQoaAZoCWgPQwj6X65FSxVxQJSGlFKUaBVNUgNoFkdAqbX8C5mRNnV9lChoBmgJaA9DCKNZ2T5kIGZAlIaUUpRoFU3oA2gWR0Cptwff4yoGdX2UKGgGaAloD0MIqtbCLHR8c0CUhpRSlGgVTd4CaBZHQKm3MUHpr1x1fZQoaAZoCWgPQwjikXh5OrxnQJSGlFKUaBVN6ANoFkdAqbgGyiVSoHV9lChoBmgJaA9DCLdELjiDBGlAlIaUUpRoFU3oA2gWR0CpvCJp35erdX2UKGgGaAloD0MIPBQF+oSMcUCUhpRSlGgVTZ8BaBZHQKm9C5iExqR1fZQoaAZoCWgPQwi0AG2rmapwQJSGlFKUaBVNjAJoFkdAqb0jtoi9qXV9lChoBmgJaA9DCDQuHAjJnnBAlIaUUpRoFUv0aBZHQKm9rJ8v25B1fZQoaAZoCWgPQwi5HK9AdItyQJSGlFKUaBVNqAJoFkdAqb3Z9b5dnnV9lChoBmgJaA9DCHdOs0C7Z2dAlIaUUpRoFU3oA2gWR0Cpvt+0w8GLdX2UKGgGaAloD0MIqP3WThRbcUCUhpRSlGgVTRkBaBZHQKm/XSaVlf91fZQoaAZoCWgPQwiC/de56SpwQJSGlFKUaBVNsQFoFkdAqcBVqk/KQ3V9lChoBmgJaA9DCLnjTX6LWWlAlIaUUpRoFU3oA2gWR0CpwIXw1BMSdX2UKGgGaAloD0MIfEW3XlNPckCUhpRSlGgVS+5oFkdAqcD+6shgV3V9lChoBmgJaA9DCFjiAWXTS25AlIaUUpRoFU1kAWgWR0CpwqjzqbBodX2UKGgGaAloD0MIOdGuQgoqckCUhpRSlGgVS/FoFkdAqcLno5ggHXV9lChoBmgJaA9DCO4KfbCMgnBAlIaUUpRoFU1dAWgWR0CpxKPMB6rvdX2UKGgGaAloD0MIDHiZYaNkZ0CUhpRSlGgVTegDaBZHQKnE5/0dzXB1fZQoaAZoCWgPQwgbuAN1SndzQJSGlFKUaBVNYwFoFkdAqcXQDPnjhnV9lChoBmgJaA9DCNiC3hsDPXBAlIaUUpRoFU2KA2gWR0CpxrtG3F1kdX2UKGgGaAloD0MIlBEXgAYlckCUhpRSlGgVTeIBaBZHQKnH1t1p0wJ1fZQoaAZoCWgPQwg/OnXls1tvQJSGlFKUaBVNZwFoFkdAqch6PbO/tnV9lChoBmgJaA9DCEfmkT8YoD1AlIaUUpRoFUtuaBZHQKnJAgezUqh1fZQoaAZoCWgPQwhsrwW9N7NoQJSGlFKUaBVN6ANoFkdAqcnJBRhttXV9lChoBmgJaA9DCJa04hsKMXNAlIaUUpRoFU3JAWgWR0CpyjhpHqeLdX2UKGgGaAloD0MIz4HlCBnHcUCUhpRSlGgVTQwBaBZHQKnKk1a4c3l1fZQoaAZoCWgPQwikNQadEPtRQJSGlFKUaBVLkmgWR0Cpyr0k4WDZdX2UKGgGaAloD0MI/kRlwxoFZ0CUhpRSlGgVTegDaBZHQKnL13pOerd1fZQoaAZoCWgPQwhbeF4qtkxyQJSGlFKUaBVNTQFoFkdAqcwyREF4cHV9lChoBmgJaA9DCC/f+rDekWVAlIaUUpRoFU3oA2gWR0CpzNbA1vVFdX2UKGgGaAloD0MI+BqC47JXckCUhpRSlGgVTacCaBZHQKnQpjyWiUR1fZQoaAZoCWgPQwgQr+sX7BBNQJSGlFKUaBVLY2gWR0Cp02zfR/mUdX2UKGgGaAloD0MIYvnzbUGecUCUhpRSlGgVTXUBaBZHQKnUQdhAnlZ1fZQoaAZoCWgPQwjgTEwXYoVwQJSGlFKUaBVNZQFoFkdAqdRjbxmTT3V9lChoBmgJaA9DCMU9lj40TXFAlIaUUpRoFU18AWgWR0Cp1MfFR51OdX2UKGgGaAloD0MICvfKvFXpTUCUhpRSlGgVS4RoFkdAqdThwKjSHHV9lChoBmgJaA9DCK+zIf8MCnFAlIaUUpRoFU3HAWgWR0Cp1Vy5iExqdX2UKGgGaAloD0MI+UogJfbTb0CUhpRSlGgVTfACaBZHQKnWyMxXXAd1fZQoaAZoCWgPQwhWC+wxkb5PQJSGlFKUaBVLlWgWR0Cp12BfKISEdX2UKGgGaAloD0MIldOeknOEcECUhpRSlGgVTVADaBZHQKnYbfYSQHR1fZQoaAZoCWgPQwilZg+0goxoQJSGlFKUaBVN6ANoFkdAqdv3K8tf5XV9lChoBmgJaA9DCHBgcqPIsEZAlIaUUpRoFUthaBZHQKneT1e0G/x1fZQoaAZoCWgPQwhDN/sD5SNyQJSGlFKUaBVN7gFoFkdAqd6AaDPGAHV9lChoBmgJaA9DCBNDcjJxLmJAlIaUUpRoFU3oA2gWR0Cp3pmnO0LMdX2UKGgGaAloD0MIxLDDmPSAckCUhpRSlGgVTYABaBZHQKnfRvegte51fZQoaAZoCWgPQwigjVw3JU1zQJSGlFKUaBVNzgFoFkdAqeDehmGucXV9lChoBmgJaA9DCDzbozdcNnJAlIaUUpRoFU0MAmgWR0Cp4ieB6KLsdX2UKGgGaAloD0MIKnCyDVwWZkCUhpRSlGgVTegDaBZHQKnjbo8IRiB1fZQoaAZoCWgPQwh/3enOE2hxQJSGlFKUaBVNTAJoFkdAqeOaJGe+VXV9lChoBmgJaA9DCAfPhCYJKGJAlIaUUpRoFU3oA2gWR0Cp5XW2w3YMdX2UKGgGaAloD0MIf74tWOp8ckCUhpRSlGgVTdoCaBZHQKnoyNvOyFB1fZQoaAZoCWgPQwhPWrisAjNzQJSGlFKUaBVNgwFoFkdAqeli/47A+XV9lChoBmgJaA9DCDdQ4J18DHNAlIaUUpRoFU1JAWgWR0Cp6oIRIz3zdX2UKGgGaAloD0MIt+wQ/7B5PkCUhpRSlGgVS41oFkdAqetLGDL8rXV9lChoBmgJaA9DCOtwdJWuYHJAlIaUUpRoFUvcaBZHQKntJTFVDKJ1fZQoaAZoCWgPQwjFkJxM3OFlQJSGlFKUaBVN6ANoFkdAqfECnk1dgXV9lChoBmgJaA9DCET9LmxNiWVAlIaUUpRoFU3oA2gWR0Cp8zy/0ulHdX2UKGgGaAloD0MITimvlVCsc0CUhpRSlGgVTVgBaBZHQKnzlH6Mzdl1fZQoaAZoCWgPQwjFxryOOBZCQJSGlFKUaBVLeWgWR0Cp8+ouf29MdX2UKGgGaAloD0MI5PkMqDcgc0CUhpRSlGgVTXADaBZHQKn1DyEtdzJ1fZQoaAZoCWgPQwg5Kcx7HB1xQJSGlFKUaBVNvAJoFkdAqfUQHmig03V9lChoBmgJaA9DCPSj4ZQ5A3FAlIaUUpRoFU1zA2gWR0Cp9WoQvpQldX2UKGgGaAloD0MIngd3Z+2dZECUhpRSlGgVTegDaBZHQKn1f5wfhdd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff23e106f46186162c763b57371fed16730339378ade364e6b95966c48de4e05
|
3 |
+
size 146205
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff7b3cfc8c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff7b3cfc950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff7b3cfc9e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff7b3cfca70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff7b3cfcb00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff7b3cfcb90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff7b3cfcc20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff7b3cfccb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff7b3cfcd40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff7b3cfcdd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff7b3cfce60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff7b3d514b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 64,
|
45 |
+
"num_timesteps": 2031616,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652635673.139628,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM372T2aCic/eKNRPUCrBr/XHR4+eQ45vQAAAAAAAAAAZp86vSnwI7oABui5fBzutbfkt7oiGwc5AACAPwAAgD+add+8j6IlupIuKjnZwJm2FeEXO9IhSLgAAIA/AACAP838FLwUuoC6T1Cmubx4aLMwrja7h7y/OAAAgD8AAIA/zW7DvEjjoLqZAIu2TpyXsZYnEroNv6Q1AACAPwAAgD8zAY29e5aauij59beemf+yZAq7Op0SDjcAAIA/AACAPzNDYbzD8Xy6eilVOoB/IjW/mo26cj94uQAAgD8AAIA/ZqYCPOE4l7pl3Vi6zsCaNTnuL7oKhHo5AACAPwAAgD9zyLe9hWP8ubiX3bniMcu1o26yuxlEAzkAAIA/AACAPwCQsb0UTv64oUaSuhrEwrYIyR88s0uvOQAAgD8AAIA/88exvfbEL7peWoQ6jS0GN/cjl7pqb5G5AACAPwAAgD/mfWa99oROuk3jazYzAwQyTdhFO6O6i7UAAIA/AACAP5pz2Dz2rHG6WztxOoA9u7TsOkY6BEmNuQAAgD8AAIA/gOuxva7Rpbq8zZc7dRULOe0/q7pKIya6AACAPwAAgD8zNVi9e6auutq90TqXzu42joZsueXn1jUAAIA/AACAP5oqKb0peB26jCCYO00VNLUOEyc6P1QetAAAgD8AAIA/AHUYvXt0xjktYS63nCIRspl4pbu1IFA2AACAPwAAgD/N5OI79lx2uraRnTYA2IkxqO3Yuq0MubUAAIA/AACAP2Zz7TxcPye6lmFeOhtwlTVZW2g7UmCBuQAAgD8AAIA/82+DPb+xtj/d0Fc+A1nAvtDEFT6VvXE9AAAAAAAAAABmnBe+Eo+MPx379b5MnB6/e/Q1vhbVK74AAAAAAAAAAGYOpTt78qq6Chv5uGZ0JjMt46K5KpwOOAAAgD8AAIA/jcnBPVy7hD9+bMY+KrhLv8O0Dz7oDzc+AAAAAAAAAACzvDs9XMMJuhVtm7rHnC+2B0TOOuEUtTkAAIA/AACAP2Z5pbwf9ZW5B2qOuS4Sk7QR7Sc737ikOAAAgD8AAIA/My0RvMNdNboGL+g64LzBNQCVDjv5IQa6AAAAAAAAgD/gMyY+/VMnPgYPo75ladS+GWiIvTwEIL4AAAAAAAAAACbvpb32fBq6zimeumZ4gDQsXJS71g25OQAAgD8AAIA/ZjgwPOEoiboyUiQ73kFhOJmZL7qZ1MK5AACAPwAAgD/N3Mi8j049ujMBm7qgQAe2hdNAOx4PtTkAAIA/AACAP+aBsr0pnAW4CBOSuocD7bUD3Y87a8qtOQAAgD8AAIA/mrAwPQQiED4Q7u6+xFh5vrKbEr6T/t+9AAAAAAAAAADNrbK8XJsHuoSqk7ps1F+2vggYuXm6qDkAAAAAAAAAAGbqi7327Hy652UsunQVyzXpClM6Ew1JOQAAgD8AAIA/MyEYPY82Urp6w4w512yRNEDK9zmJzKW4AACAPwAAgD+zPUE9SB+Suoh9PThR2DQz/ZwIOV2KW7cAAIA/AACAP83QGb2MS3A+wyWcvXHR/76qXJe9y3h6vQAAAAAAAAAAZuq4PI/6G7riBX25baRwtGjodzuguZY4AACAPwAAgD/NDu+8UqC+uY6pgrpvWtA0XNLfu/oLmjkAAIA/AACAPxoSJb17SoO6qndcOyJpvDVpuYU66jJ7ugAAgD8AAIA/ZrcBvXtqq7peqAG55nn4s2qw0bgxpRQ4AACAPwAAgD8awXU99swVuspTibtF8IU4RL2POg11cjkAAIA/AACAP5pXVjz2XDS6tYKluk2P/bVXAqs7X7zCOQAAgD8AAIA/TXRhvfYUdrqjXum5GmFJtTODrDqe3AQ5AACAPwAAgD8AKNC8w11iuuOOHbuAQUs2dK36ut2eODoAAIA/AACAP83zhb1SQKC5qmC0O+OK7zez0Jw6JsMEtQAAgD8AAIA/zaxBPSkAKboB8Q43ifDnsHqzqrtGLii2AACAPwAAgD/mnWq99hgqulDFxrrAfxm1Pr0ruw746DkAAIA/AACAP41aiz17eqe6GK19uMvebLM/oOS39oWRNwAAgD8AAIA/AABQOvaUI7r/Ea86V4buNX7B2bpx4cu5AACAPwAAgD+Aylu94aSdurpHdjlp52w0uIqeOnoXjrgAAIA/AACAPzPxyDwze60/lPfDPmw69b7DbsK6e4TOPQAAAAAAAAAAZrxKPMNBUbqWqWq6Qo9LtdYs0rnQ0Ik5AACAPwAAgD8zliK9SCGBuhh1KDgz6cIzHeN0O23gP7cAAIA/AACAPzMz3rx5hrU/+bkFv5f4MTxwMjA8igBAvQAAAAAAAAAADTmVvfZ4M7pFEn25yYi/s+UCubs39pQ4AACAPwAAgD8mGoc9xLWqP39DIT/3fOy+sgEDvfc3jT0AAAAAAAAAAO3MB77S1a67y1lEu7p867gifQM9ED99OgAAgD8AAIA/ACsPvVBMvT99oai+c6M6Pqpb+7zP1AS+AAAAAAAAAABmftk7e/KMuoApfrerPUiyak6YugjykjYAAIA/AACAP40njj5R5uc+8pORvm7M9r6PfRA+rpqhvAAAAAAAAAAAAHZjvRQokbrlg+u6DPMDtpjwjDnDowc6AACAPwAAgD8abXW9PVpCubrbqztiurc3fPK4OiKqmboAAIA/AACAP5q5RL0fNdS5NMk8ujzP0rROxCE7G51cOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImNu93KcmckCUhpRSlIwBbJRNJwGMAXSUR0CpnkQOOKfndX2UKGgGaAloD0MIrTHohFDzckCUhpRSlGgVTdgDaBZHQKmi62kzoEB1fZQoaAZoCWgPQwgEWrqCbQtjQJSGlFKUaBVN6ANoFkdAqaM3kLhJiHV9lChoBmgJaA9DCBVxOsmWYnFAlIaUUpRoFU01A2gWR0Cpo1DNIK+jdX2UKGgGaAloD0MIdhppqTzHYkCUhpRSlGgVTegDaBZHQKmjslyimEZ1fZQoaAZoCWgPQwgEHa1qScdlQJSGlFKUaBVN6ANoFkdAqaR3nuAqeHV9lChoBmgJaA9DCJlho6zfNmRAlIaUUpRoFU3oA2gWR0CppvMny/bkdX2UKGgGaAloD0MIqFKzB1qqakCUhpRSlGgVTegDaBZHQKmnDCu2ZzB1fZQoaAZoCWgPQwg9D+7OGqdyQJSGlFKUaBVNJwJoFkdAqacjamGdqnV9lChoBmgJaA9DCNJu9DEfEHJAlIaUUpRoFU2CAWgWR0CppzqrzXjEdX2UKGgGaAloD0MI+SzPg7uZZkCUhpRSlGgVTegDaBZHQKmnUfjjrAx1fZQoaAZoCWgPQwhoeLMGL9JwQJSGlFKUaBVNBQFoFkdAqad+KKpDNXV9lChoBmgJaA9DCHLcKR1s4nJAlIaUUpRoFU3QAWgWR0CpqAaAFxGUdX2UKGgGaAloD0MIJlZGI5+pSUCUhpRSlGgVS4ZoFkdAqagdC5VfeHV9lChoBmgJaA9DCJ7r+3BQdnFAlIaUUpRoFUvnaBZHQKmogCdz4lB1fZQoaAZoCWgPQwjvcDs0rLNwQJSGlFKUaBVL+2gWR0CpqJhhYvFndX2UKGgGaAloD0MINKFJYsmiZECUhpRSlGgVTegDaBZHQKmoxpwjt5V1fZQoaAZoCWgPQwjGUiRfCdVhQJSGlFKUaBVN6ANoFkdAqamCj59E1HV9lChoBmgJaA9DCFd8Q+Gz6WVAlIaUUpRoFU3oA2gWR0Cpqcx4QjD9dX2UKGgGaAloD0MIT+j1J/Hdc0CUhpRSlGgVTQMCaBZHQKmp59Brvb51fZQoaAZoCWgPQwgmj6flhzllQJSGlFKUaBVN6ANoFkdAqap8T37DVHV9lChoBmgJaA9DCEg3wqKiYHFAlIaUUpRoFU1zAWgWR0CpqsxUNrj6dX2UKGgGaAloD0MIXTXPEfmbcECUhpRSlGgVTWMCaBZHQKmrX9QXQ+l1fZQoaAZoCWgPQwgOSS2UzJtlQJSGlFKUaBVN6ANoFkdAqa1D9GZuynV9lChoBmgJaA9DCNDTgEESpnBAlIaUUpRoFUv/aBZHQKmuRzK9wm51fZQoaAZoCWgPQwjO4sXCEPJuQJSGlFKUaBVN2AFoFkdAqa7CeCkGinV9lChoBmgJaA9DCCh9IeQ8VGVAlIaUUpRoFU3oA2gWR0Cpr4TEit7sdX2UKGgGaAloD0MI3Xh3ZGyTckCUhpRSlGgVTSsCaBZHQKmv/RKpT/B1fZQoaAZoCWgPQwhDHsGNFFNzQJSGlFKUaBVNogFoFkdAqbEA6fapP3V9lChoBmgJaA9DCHKKjuRyc2ZAlIaUUpRoFU3oA2gWR0Cpss8/D+BIdX2UKGgGaAloD0MIv5gtWRXNZECUhpRSlGgVTegDaBZHQKmzijgQ6IZ1fZQoaAZoCWgPQwjkvP+PU95xQJSGlFKUaBVNfANoFkdAqbOKLyc0+HV9lChoBmgJaA9DCKXd6GM+F25AlIaUUpRoFU2EAWgWR0Cps6EELYwqdX2UKGgGaAloD0MIcSGP4MYHZ0CUhpRSlGgVTegDaBZHQKmz2WCVbA11fZQoaAZoCWgPQwjP2QJCa4tyQJSGlFKUaBVNtwJoFkdAqbPx37k4m3V9lChoBmgJaA9DCJawNsbOXHBAlIaUUpRoFU2QA2gWR0CptBgeJYT1dX2UKGgGaAloD0MISkVj7W/GZkCUhpRSlGgVTegDaBZHQKm1ZcJMQEp1fZQoaAZoCWgPQwj6X65FSxVxQJSGlFKUaBVNUgNoFkdAqbX8C5mRNnV9lChoBmgJaA9DCKNZ2T5kIGZAlIaUUpRoFU3oA2gWR0Cptwff4yoGdX2UKGgGaAloD0MIqtbCLHR8c0CUhpRSlGgVTd4CaBZHQKm3MUHpr1x1fZQoaAZoCWgPQwjikXh5OrxnQJSGlFKUaBVN6ANoFkdAqbgGyiVSoHV9lChoBmgJaA9DCLdELjiDBGlAlIaUUpRoFU3oA2gWR0CpvCJp35erdX2UKGgGaAloD0MIPBQF+oSMcUCUhpRSlGgVTZ8BaBZHQKm9C5iExqR1fZQoaAZoCWgPQwi0AG2rmapwQJSGlFKUaBVNjAJoFkdAqb0jtoi9qXV9lChoBmgJaA9DCDQuHAjJnnBAlIaUUpRoFUv0aBZHQKm9rJ8v25B1fZQoaAZoCWgPQwi5HK9AdItyQJSGlFKUaBVNqAJoFkdAqb3Z9b5dnnV9lChoBmgJaA9DCHdOs0C7Z2dAlIaUUpRoFU3oA2gWR0Cpvt+0w8GLdX2UKGgGaAloD0MIqP3WThRbcUCUhpRSlGgVTRkBaBZHQKm/XSaVlf91fZQoaAZoCWgPQwiC/de56SpwQJSGlFKUaBVNsQFoFkdAqcBVqk/KQ3V9lChoBmgJaA9DCLnjTX6LWWlAlIaUUpRoFU3oA2gWR0CpwIXw1BMSdX2UKGgGaAloD0MIfEW3XlNPckCUhpRSlGgVS+5oFkdAqcD+6shgV3V9lChoBmgJaA9DCFjiAWXTS25AlIaUUpRoFU1kAWgWR0CpwqjzqbBodX2UKGgGaAloD0MIOdGuQgoqckCUhpRSlGgVS/FoFkdAqcLno5ggHXV9lChoBmgJaA9DCO4KfbCMgnBAlIaUUpRoFU1dAWgWR0CpxKPMB6rvdX2UKGgGaAloD0MIDHiZYaNkZ0CUhpRSlGgVTegDaBZHQKnE5/0dzXB1fZQoaAZoCWgPQwgbuAN1SndzQJSGlFKUaBVNYwFoFkdAqcXQDPnjhnV9lChoBmgJaA9DCNiC3hsDPXBAlIaUUpRoFU2KA2gWR0CpxrtG3F1kdX2UKGgGaAloD0MIlBEXgAYlckCUhpRSlGgVTeIBaBZHQKnH1t1p0wJ1fZQoaAZoCWgPQwg/OnXls1tvQJSGlFKUaBVNZwFoFkdAqch6PbO/tnV9lChoBmgJaA9DCEfmkT8YoD1AlIaUUpRoFUtuaBZHQKnJAgezUqh1fZQoaAZoCWgPQwhsrwW9N7NoQJSGlFKUaBVN6ANoFkdAqcnJBRhttXV9lChoBmgJaA9DCJa04hsKMXNAlIaUUpRoFU3JAWgWR0CpyjhpHqeLdX2UKGgGaAloD0MIz4HlCBnHcUCUhpRSlGgVTQwBaBZHQKnKk1a4c3l1fZQoaAZoCWgPQwikNQadEPtRQJSGlFKUaBVLkmgWR0Cpyr0k4WDZdX2UKGgGaAloD0MI/kRlwxoFZ0CUhpRSlGgVTegDaBZHQKnL13pOerd1fZQoaAZoCWgPQwhbeF4qtkxyQJSGlFKUaBVNTQFoFkdAqcwyREF4cHV9lChoBmgJaA9DCC/f+rDekWVAlIaUUpRoFU3oA2gWR0CpzNbA1vVFdX2UKGgGaAloD0MI+BqC47JXckCUhpRSlGgVTacCaBZHQKnQpjyWiUR1fZQoaAZoCWgPQwgQr+sX7BBNQJSGlFKUaBVLY2gWR0Cp02zfR/mUdX2UKGgGaAloD0MIYvnzbUGecUCUhpRSlGgVTXUBaBZHQKnUQdhAnlZ1fZQoaAZoCWgPQwjgTEwXYoVwQJSGlFKUaBVNZQFoFkdAqdRjbxmTT3V9lChoBmgJaA9DCMU9lj40TXFAlIaUUpRoFU18AWgWR0Cp1MfFR51OdX2UKGgGaAloD0MICvfKvFXpTUCUhpRSlGgVS4RoFkdAqdThwKjSHHV9lChoBmgJaA9DCK+zIf8MCnFAlIaUUpRoFU3HAWgWR0Cp1Vy5iExqdX2UKGgGaAloD0MI+UogJfbTb0CUhpRSlGgVTfACaBZHQKnWyMxXXAd1fZQoaAZoCWgPQwhWC+wxkb5PQJSGlFKUaBVLlWgWR0Cp12BfKISEdX2UKGgGaAloD0MIldOeknOEcECUhpRSlGgVTVADaBZHQKnYbfYSQHR1fZQoaAZoCWgPQwilZg+0goxoQJSGlFKUaBVN6ANoFkdAqdv3K8tf5XV9lChoBmgJaA9DCHBgcqPIsEZAlIaUUpRoFUthaBZHQKneT1e0G/x1fZQoaAZoCWgPQwhDN/sD5SNyQJSGlFKUaBVN7gFoFkdAqd6AaDPGAHV9lChoBmgJaA9DCBNDcjJxLmJAlIaUUpRoFU3oA2gWR0Cp3pmnO0LMdX2UKGgGaAloD0MIxLDDmPSAckCUhpRSlGgVTYABaBZHQKnfRvegte51fZQoaAZoCWgPQwigjVw3JU1zQJSGlFKUaBVNzgFoFkdAqeDehmGucXV9lChoBmgJaA9DCDzbozdcNnJAlIaUUpRoFU0MAmgWR0Cp4ieB6KLsdX2UKGgGaAloD0MIKnCyDVwWZkCUhpRSlGgVTegDaBZHQKnjbo8IRiB1fZQoaAZoCWgPQwh/3enOE2hxQJSGlFKUaBVNTAJoFkdAqeOaJGe+VXV9lChoBmgJaA9DCAfPhCYJKGJAlIaUUpRoFU3oA2gWR0Cp5XW2w3YMdX2UKGgGaAloD0MIf74tWOp8ckCUhpRSlGgVTdoCaBZHQKnoyNvOyFB1fZQoaAZoCWgPQwhPWrisAjNzQJSGlFKUaBVNgwFoFkdAqeli/47A+XV9lChoBmgJaA9DCDdQ4J18DHNAlIaUUpRoFU1JAWgWR0Cp6oIRIz3zdX2UKGgGaAloD0MIt+wQ/7B5PkCUhpRSlGgVS41oFkdAqetLGDL8rXV9lChoBmgJaA9DCOtwdJWuYHJAlIaUUpRoFUvcaBZHQKntJTFVDKJ1fZQoaAZoCWgPQwjFkJxM3OFlQJSGlFKUaBVN6ANoFkdAqfECnk1dgXV9lChoBmgJaA9DCET9LmxNiWVAlIaUUpRoFU3oA2gWR0Cp8zy/0ulHdX2UKGgGaAloD0MITimvlVCsc0CUhpRSlGgVTVgBaBZHQKnzlH6Mzdl1fZQoaAZoCWgPQwjFxryOOBZCQJSGlFKUaBVLeWgWR0Cp8+ouf29MdX2UKGgGaAloD0MI5PkMqDcgc0CUhpRSlGgVTXADaBZHQKn1DyEtdzJ1fZQoaAZoCWgPQwg5Kcx7HB1xQJSGlFKUaBVNvAJoFkdAqfUQHmig03V9lChoBmgJaA9DCPSj4ZQ5A3FAlIaUUpRoFU1zA2gWR0Cp9WoQvpQldX2UKGgGaAloD0MIngd3Z+2dZECUhpRSlGgVTegDaBZHQKn1f5wfhdd1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bab547853e28bd6b4147ea88f82606c9cf84089d1e5429ecd8a5dae88de6ed2f
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:194f2fe091589de185c3c72d39c08c2bdd3edac3c5824c431c33f184960a3c58
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78a275fe0b4cf0724e8744e167f07255946a8d49ba7676da55cb2587161ae521
|
3 |
+
size 212367
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.5739950188088, "std_reward": 10.849954800561116, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T18:30:37.089841"}
|