nreimers commited on
Commit
2921f48
1 Parent(s): dccb256

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": true,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,83 +1,103 @@
1
  ---
2
- language: en
3
  tags:
4
- - exbert
5
  - sentence-transformers
 
 
 
 
 
6
  - transformers
7
- license: apache-2.0
8
- datasets:
9
- - snli
10
- - multi_nli
11
  ---
12
 
13
- # BERT base model (uncased) for Sentence Embeddings
14
- This is the `bert-base-nli-max-tokens` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings.
15
- The model is described in the paper [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- ## Usage (HuggingFace Models Repository)
18
 
19
- You can use the model directly from the model repository to compute sentence embeddings. It uses max pooling to generate a fixed sized sentence embedding:
 
 
20
  ```python
21
  from transformers import AutoTokenizer, AutoModel
22
  import torch
23
 
24
 
25
- #Max Pooling - Take the max value over time for every dimension
26
  def max_pooling(model_output, attention_mask):
27
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
28
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
29
  token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
30
- max_over_time = torch.max(token_embeddings, 1)[0]
31
- return max_over_time
32
 
33
 
34
- #Sentences we want sentence embeddings for
35
- sentences = ['This framework generates embeddings for each input sentence',
36
- 'Sentences are passed as a list of string.',
37
- 'The quick brown fox jumps over the lazy dog.']
38
 
39
- #Load AutoModel from huggingface model repository
40
- tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/bert-base-nli-max-tokens")
41
- model = AutoModel.from_pretrained("sentence-transformers/bert-base-nli-max-tokens")
42
 
43
- #Tokenize sentences
44
- encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
45
 
46
- #Compute token embeddings
47
  with torch.no_grad():
48
  model_output = model(**encoded_input)
49
 
50
- #Perform pooling. In this case, max pooling
51
  sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
52
 
53
-
54
  print("Sentence embeddings:")
55
  print(sentence_embeddings)
56
  ```
57
 
58
- ## Usage (Sentence-Transformers)
59
- Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
60
- ```
61
- pip install -U sentence-transformers
62
- ```
63
 
64
- Then you can use the model like this:
65
- ```python
66
- from sentence_transformers import SentenceTransformer
67
- model = SentenceTransformer('bert-base-nli-max-tokens')
68
- sentences = ['This framework generates embeddings for each input sentence',
69
- 'Sentences are passed as a list of string.',
70
- 'The quick brown fox jumps over the lazy dog.']
71
- sentence_embeddings = model.encode(sentences)
72
 
73
- print("Sentence embeddings:")
74
- print(sentence_embeddings)
75
- ```
 
 
 
76
 
77
 
 
 
 
 
 
 
 
 
78
  ## Citing & Authors
 
 
 
79
  If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
80
- ```
81
  @inproceedings{reimers-2019-sentence-bert,
82
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
83
  author = "Reimers, Nils and Gurevych, Iryna",
@@ -87,4 +107,4 @@ If you find this model helpful, feel free to cite our publication [Sentence-BERT
87
  publisher = "Association for Computational Linguistics",
88
  url = "http://arxiv.org/abs/1908.10084",
89
  }
90
- ```
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
  tags:
 
4
  - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ - transformers
9
+ - transformers
10
  - transformers
 
 
 
 
11
  ---
12
 
13
+ # sentence-transformers/bert-base-nli-max-tokens
14
+
15
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
16
+
17
+
18
+
19
+ ## Usage (Sentence-Transformers)
20
+
21
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
22
+
23
+ ```
24
+ pip install -U sentence-transformers
25
+ ```
26
+
27
+ Then you can use the model like this:
28
+
29
+ ```python
30
+ from sentence_transformers import SentenceTransformer
31
+ sentences = ["This is an example sentence", "Each sentence is converted"]
32
+
33
+ model = SentenceTransformer('sentence-transformers/bert-base-nli-max-tokens')
34
+ embeddings = model.encode(sentences)
35
+ print(embeddings)
36
+ ```
37
+
38
 
 
39
 
40
+ ## Usage (HuggingFace Transformers)
41
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
42
+
43
  ```python
44
  from transformers import AutoTokenizer, AutoModel
45
  import torch
46
 
47
 
48
+ # Max Pooling - Take the max value over time for every dimension.
49
  def max_pooling(model_output, attention_mask):
50
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
51
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
52
  token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
53
+ return torch.max(token_embeddings, 1)[0]
 
54
 
55
 
56
+ # Sentences we want sentence embeddings for
57
+ sentences = ['This is an example sentence', 'Each sentence is converted']
 
 
58
 
59
+ # Load model from HuggingFace Hub
60
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/bert-base-nli-max-tokens')
61
+ model = AutoModel.from_pretrained('sentence-transformers/bert-base-nli-max-tokens')
62
 
63
+ # Tokenize sentences
64
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
65
 
66
+ # Compute token embeddings
67
  with torch.no_grad():
68
  model_output = model(**encoded_input)
69
 
70
+ # Perform pooling. In this case, max pooling.
71
  sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
72
 
 
73
  print("Sentence embeddings:")
74
  print(sentence_embeddings)
75
  ```
76
 
 
 
 
 
 
77
 
 
 
 
 
 
 
 
 
78
 
79
+ ## Evaluation Results
80
+
81
+
82
+
83
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/bert-base-nli-max-tokens)
84
+
85
 
86
 
87
+ ## Full Model Architecture
88
+ ```
89
+ SentenceTransformer(
90
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
91
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': True, 'pooling_mode_mean_sqrt_len_tokens': False})
92
+ )
93
+ ```
94
+
95
  ## Citing & Authors
96
+
97
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
98
+
99
  If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
100
+ ```bibtex
101
  @inproceedings{reimers-2019-sentence-bert,
102
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
103
  author = "Reimers, Nils and Gurevych, Iryna",
 
107
  publisher = "Association for Computational Linguistics",
108
  url = "http://arxiv.org/abs/1908.10084",
109
  }
110
+ ```
config.json CHANGED
@@ -1,4 +1,5 @@
1
  {
 
2
  "architectures": [
3
  "BertModel"
4
  ],
@@ -15,6 +16,9 @@
15
  "num_attention_heads": 12,
16
  "num_hidden_layers": 12,
17
  "pad_token_id": 0,
 
 
18
  "type_vocab_size": 2,
 
19
  "vocab_size": 30522
20
- }
 
1
  {
2
+ "_name_or_path": "old_models/bert-base-nli-max-tokens/0_BERT",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
16
  "num_attention_heads": 12,
17
  "num_hidden_layers": 12,
18
  "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "transformers_version": "4.7.0",
21
  "type_vocab_size": 2,
22
+ "use_cache": true,
23
  "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f26fc604fb63f2fe66043c0ac8c6eb18c7e67e342ffb0c1ed6f77657377a5019
3
- size 438006864
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2a9f8d4879ca4b410a477c9b8f94e4a058bbcdcc82ec4b71eabbd4b67480bda
3
+ size 438007537
sentence_bert_config.json CHANGED
@@ -1,3 +1,4 @@
1
  {
2
- "max_seq_length": 128
 
3
  }
 
1
  {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
  }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "old_models/bert-base-nli-max-tokens/0_BERT/special_tokens_map.json", "name_or_path": "old_models/bert-base-nli-max-tokens/0_BERT", "do_basic_tokenize": true, "never_split": null}