add convert files
Browse files- convert-gtr.ipynb +1027 -0
- convert_to_fp16.py +9 -0
convert-gtr.ipynb
ADDED
@@ -0,0 +1,1027 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "17bffc12",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from transformers import AutoTokenizer\n",
|
11 |
+
"from sentence_transformers import util\n",
|
12 |
+
"import os\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"import torch.nn.functional as F\n",
|
15 |
+
"from transformers import T5EncoderModel\n",
|
16 |
+
"import sentence_transformers"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 2,
|
22 |
+
"id": "160d8ce6",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"\n",
|
27 |
+
"#Mean Pooling - Take attention mask into account for correct averaging\n",
|
28 |
+
"def mean_pooling(model_output, attention_mask):\n",
|
29 |
+
" token_embeddings = model_output[0] #First element of model_output contains all token embeddings\n",
|
30 |
+
" input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()\n",
|
31 |
+
" return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)\n",
|
32 |
+
"\n",
|
33 |
+
"\n",
|
34 |
+
" "
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 3,
|
40 |
+
"id": "2f67f426",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [
|
43 |
+
{
|
44 |
+
"name": "stderr",
|
45 |
+
"output_type": "stream",
|
46 |
+
"text": [
|
47 |
+
"INFO:absl:Using /tmp/tfhub_modules to cache modules.\n",
|
48 |
+
"2022-02-01 20:04:53.747606: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64\n",
|
49 |
+
"2022-02-01 20:04:53.747647: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1835] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n",
|
50 |
+
"Skipping registering GPU devices...\n",
|
51 |
+
"2022-02-01 20:04:53.747987: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n",
|
52 |
+
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
53 |
+
"WARNING:absl:Importing a function (__inference_closure_12264) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n",
|
54 |
+
"WARNING:absl:Importing a function (__inference_closure_8418) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n",
|
55 |
+
"WARNING:absl:Importing a function (__inference_closure_4202) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n"
|
56 |
+
]
|
57 |
+
}
|
58 |
+
],
|
59 |
+
"source": [
|
60 |
+
"import tensorflow as tf\n",
|
61 |
+
"import tensorflow_hub as hub\n",
|
62 |
+
"import tensorflow_text as text \n",
|
63 |
+
"\n",
|
64 |
+
"model_size_tf, model_size_hf = \"base\", \"base\"\n",
|
65 |
+
"hub_url = f\"https://tfhub.dev/google/gtr/gtr-{model_size_tf}/1\"\n",
|
66 |
+
"encoder = hub.load(hub_url)\n",
|
67 |
+
"\n",
|
68 |
+
"v = encoder.signatures['serving_default'].variables"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 4,
|
74 |
+
"id": "5f4c8d94",
|
75 |
+
"metadata": {
|
76 |
+
"scrolled": true
|
77 |
+
},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"data": {
|
81 |
+
"text/plain": [
|
82 |
+
"{'encoder__encoder_norm__scale:0': TensorShape([768]),\n",
|
83 |
+
" 'encoder__layers_0__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
84 |
+
" 'encoder__layers_0__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
85 |
+
" 'encoder__layers_0__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
86 |
+
" 'encoder__layers_0__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
87 |
+
" 'encoder__layers_0__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
88 |
+
" 'encoder__layers_0__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
89 |
+
" 'encoder__layers_0__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
90 |
+
" 'encoder__layers_0__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
91 |
+
" 'encoder__layers_1__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
92 |
+
" 'encoder__layers_1__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
93 |
+
" 'encoder__layers_1__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
94 |
+
" 'encoder__layers_1__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
95 |
+
" 'encoder__layers_1__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
96 |
+
" 'encoder__layers_1__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
97 |
+
" 'encoder__layers_1__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
98 |
+
" 'encoder__layers_1__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
99 |
+
" 'encoder__layers_10__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
100 |
+
" 'encoder__layers_10__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
101 |
+
" 'encoder__layers_10__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
102 |
+
" 'encoder__layers_10__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
103 |
+
" 'encoder__layers_10__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
104 |
+
" 'encoder__layers_10__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
105 |
+
" 'encoder__layers_10__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
106 |
+
" 'encoder__layers_10__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
107 |
+
" 'encoder__layers_11__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
108 |
+
" 'encoder__layers_11__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
109 |
+
" 'encoder__layers_11__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
110 |
+
" 'encoder__layers_11__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
111 |
+
" 'encoder__layers_11__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
112 |
+
" 'encoder__layers_11__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
113 |
+
" 'encoder__layers_11__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
114 |
+
" 'encoder__layers_11__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
115 |
+
" 'encoder__layers_2__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
116 |
+
" 'encoder__layers_2__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
117 |
+
" 'encoder__layers_2__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
118 |
+
" 'encoder__layers_2__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
119 |
+
" 'encoder__layers_2__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
120 |
+
" 'encoder__layers_2__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
121 |
+
" 'encoder__layers_2__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
122 |
+
" 'encoder__layers_2__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
123 |
+
" 'encoder__layers_3__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
124 |
+
" 'encoder__layers_3__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
125 |
+
" 'encoder__layers_3__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
126 |
+
" 'encoder__layers_3__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
127 |
+
" 'encoder__layers_3__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
128 |
+
" 'encoder__layers_3__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
129 |
+
" 'encoder__layers_3__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
130 |
+
" 'encoder__layers_3__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
131 |
+
" 'encoder__layers_4__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
132 |
+
" 'encoder__layers_4__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
133 |
+
" 'encoder__layers_4__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
134 |
+
" 'encoder__layers_4__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
135 |
+
" 'encoder__layers_4__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
136 |
+
" 'encoder__layers_4__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
137 |
+
" 'encoder__layers_4__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
138 |
+
" 'encoder__layers_4__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
139 |
+
" 'encoder__layers_5__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
140 |
+
" 'encoder__layers_5__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
141 |
+
" 'encoder__layers_5__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
142 |
+
" 'encoder__layers_5__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
143 |
+
" 'encoder__layers_5__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
144 |
+
" 'encoder__layers_5__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
145 |
+
" 'encoder__layers_5__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
146 |
+
" 'encoder__layers_5__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
147 |
+
" 'encoder__layers_6__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
148 |
+
" 'encoder__layers_6__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
149 |
+
" 'encoder__layers_6__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
150 |
+
" 'encoder__layers_6__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
151 |
+
" 'encoder__layers_6__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
152 |
+
" 'encoder__layers_6__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
153 |
+
" 'encoder__layers_6__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
154 |
+
" 'encoder__layers_6__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
155 |
+
" 'encoder__layers_7__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
156 |
+
" 'encoder__layers_7__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
157 |
+
" 'encoder__layers_7__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
158 |
+
" 'encoder__layers_7__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
159 |
+
" 'encoder__layers_7__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
160 |
+
" 'encoder__layers_7__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
161 |
+
" 'encoder__layers_7__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
162 |
+
" 'encoder__layers_7__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
163 |
+
" 'encoder__layers_8__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
164 |
+
" 'encoder__layers_8__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
165 |
+
" 'encoder__layers_8__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
166 |
+
" 'encoder__layers_8__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
167 |
+
" 'encoder__layers_8__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
168 |
+
" 'encoder__layers_8__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
169 |
+
" 'encoder__layers_8__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
170 |
+
" 'encoder__layers_8__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
171 |
+
" 'encoder__layers_9__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
172 |
+
" 'encoder__layers_9__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
173 |
+
" 'encoder__layers_9__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
174 |
+
" 'encoder__layers_9__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
175 |
+
" 'encoder__layers_9__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
176 |
+
" 'encoder__layers_9__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
177 |
+
" 'encoder__layers_9__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
178 |
+
" 'encoder__layers_9__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
179 |
+
" 'encoder__relpos_bias__rel_embedding:0': TensorShape([12, 32]),\n",
|
180 |
+
" 'projection_layer__kernel:0': TensorShape([768, 768]),\n",
|
181 |
+
" 'token_embedder__embedding:0': TensorShape([32128, 768])}"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"execution_count": 4,
|
185 |
+
"metadata": {},
|
186 |
+
"output_type": "execute_result"
|
187 |
+
}
|
188 |
+
],
|
189 |
+
"source": [
|
190 |
+
"tf_name_weight = {var.name: var for var in v}\n",
|
191 |
+
"tf_name_shape = {var.name: var.shape for var in v}\n",
|
192 |
+
"tf_name_shape"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "code",
|
197 |
+
"execution_count": 7,
|
198 |
+
"id": "6d223b07",
|
199 |
+
"metadata": {
|
200 |
+
"scrolled": true
|
201 |
+
},
|
202 |
+
"outputs": [
|
203 |
+
{
|
204 |
+
"data": {
|
205 |
+
"application/vnd.jupyter.widget-view+json": {
|
206 |
+
"model_id": "e4b637f4a8f847fcaa7b09fb729227b0",
|
207 |
+
"version_major": 2,
|
208 |
+
"version_minor": 0
|
209 |
+
},
|
210 |
+
"text/plain": [
|
211 |
+
"HBox(children=(HTML(value='Downloading'), FloatProgress(value=0.0, max=45229452544.0), HTML(value='')))"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
"metadata": {},
|
215 |
+
"output_type": "display_data"
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"name": "stdout",
|
219 |
+
"output_type": "stream",
|
220 |
+
"text": [
|
221 |
+
"\n"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"name": "stderr",
|
226 |
+
"output_type": "stream",
|
227 |
+
"text": [
|
228 |
+
"Some weights of the model checkpoint at t5-11b were not used when initializing T5EncoderModel: ['decoder.block.13.layer.1.EncDecAttention.o.weight', 'decoder.block.14.layer.2.DenseReluDense.wo.weight', 'decoder.block.4.layer.0.layer_norm.weight', 'decoder.block.6.layer.1.EncDecAttention.v.weight', 'decoder.block.15.layer.0.SelfAttention.v.weight', 'decoder.block.3.layer.1.layer_norm.weight', 'decoder.block.11.layer.2.DenseReluDense.wi.weight', 'decoder.block.11.layer.2.DenseReluDense.wo.weight', 'decoder.block.3.layer.0.SelfAttention.o.weight', 'decoder.block.12.layer.2.DenseReluDense.wo.weight', 'decoder.block.8.layer.1.EncDecAttention.k.weight', 'decoder.block.18.layer.1.layer_norm.weight', 'decoder.block.9.layer.2.DenseReluDense.wi.weight', 'decoder.block.15.layer.0.SelfAttention.q.weight', 'decoder.block.7.layer.0.SelfAttention.k.weight', 'decoder.block.14.layer.0.SelfAttention.v.weight', 'decoder.block.2.layer.0.SelfAttention.o.weight', 'decoder.block.14.layer.0.SelfAttention.q.weight', 'decoder.block.7.layer.0.SelfAttention.o.weight', 'decoder.block.9.layer.1.EncDecAttention.v.weight', 'decoder.block.21.layer.1.EncDecAttention.v.weight', 'decoder.block.5.layer.0.SelfAttention.q.weight', 'decoder.block.19.layer.2.layer_norm.weight', 'decoder.block.14.layer.1.EncDecAttention.k.weight', 'decoder.block.12.layer.1.EncDecAttention.o.weight', 'decoder.block.18.layer.2.DenseReluDense.wi.weight', 'decoder.block.3.layer.0.SelfAttention.q.weight', 'decoder.block.9.layer.2.DenseReluDense.wo.weight', 'decoder.block.14.layer.0.SelfAttention.k.weight', 'decoder.block.4.layer.0.SelfAttention.o.weight', 'decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight', 'decoder.block.23.layer.1.EncDecAttention.o.weight', 'decoder.block.6.layer.0.SelfAttention.v.weight', 'decoder.block.14.layer.1.EncDecAttention.v.weight', 'decoder.block.8.layer.0.SelfAttention.o.weight', 'decoder.block.0.layer.1.EncDecAttention.v.weight', 'decoder.block.3.layer.0.layer_norm.weight', 'decoder.block.10.layer.2.layer_norm.weight', 'decoder.block.4.layer.2.DenseReluDense.wo.weight', 'decoder.block.21.layer.0.layer_norm.weight', 'decoder.block.12.layer.2.layer_norm.weight', 'decoder.block.2.layer.0.SelfAttention.k.weight', 'decoder.block.0.layer.2.DenseReluDense.wi.weight', 'decoder.block.1.layer.2.layer_norm.weight', 'decoder.block.5.layer.0.layer_norm.weight', 'decoder.block.1.layer.1.EncDecAttention.o.weight', 'decoder.block.17.layer.0.SelfAttention.v.weight', 'decoder.block.11.layer.2.layer_norm.weight', 'decoder.block.3.layer.1.EncDecAttention.k.weight', 'decoder.block.15.layer.1.EncDecAttention.v.weight', 'decoder.block.12.layer.0.SelfAttention.q.weight', 'decoder.block.23.layer.0.SelfAttention.o.weight', 'decoder.block.16.layer.0.SelfAttention.q.weight', 'decoder.block.21.layer.0.SelfAttention.o.weight', 'decoder.block.19.layer.0.SelfAttention.q.weight', 'decoder.block.19.layer.0.SelfAttention.v.weight', 'decoder.block.7.layer.0.SelfAttention.q.weight', 'decoder.block.13.layer.0.SelfAttention.o.weight', 'decoder.block.20.layer.2.DenseReluDense.wi.weight', 'decoder.block.12.layer.2.DenseReluDense.wi.weight', 'decoder.block.5.layer.1.EncDecAttention.o.weight', 'decoder.block.17.layer.2.layer_norm.weight', 'decoder.block.21.layer.1.EncDecAttention.k.weight', 'decoder.block.16.layer.1.EncDecAttention.q.weight', 'decoder.block.8.layer.1.layer_norm.weight', 'decoder.block.5.layer.2.DenseReluDense.wi.weight', 'decoder.block.9.layer.1.EncDecAttention.o.weight', 'decoder.block.22.layer.1.EncDecAttention.k.weight', 'decoder.block.0.layer.1.EncDecAttention.k.weight', 'decoder.block.4.layer.1.EncDecAttention.k.weight', 'decoder.block.22.layer.2.DenseReluDense.wi.weight', 'decoder.block.23.layer.2.layer_norm.weight', 'decoder.block.2.layer.2.DenseReluDense.wo.weight', 'decoder.block.23.layer.0.SelfAttention.q.weight', 'decoder.block.20.layer.1.EncDecAttention.o.weight', 'decoder.block.3.layer.1.EncDecAttention.v.weight', 'decoder.block.1.layer.0.SelfAttention.o.weight', 'decoder.block.17.layer.1.EncDecAttention.v.weight', 'decoder.block.9.layer.1.EncDecAttention.k.weight', 'decoder.block.12.layer.0.SelfAttention.k.weight', 'decoder.block.3.layer.0.SelfAttention.k.weight', 'decoder.block.0.layer.0.SelfAttention.q.weight', 'decoder.block.16.layer.2.DenseReluDense.wi.weight', 'decoder.block.2.layer.0.layer_norm.weight', 'decoder.block.17.layer.1.EncDecAttention.q.weight', 'decoder.block.13.layer.0.SelfAttention.k.weight', 'decoder.block.21.layer.2.layer_norm.weight', 'decoder.block.4.layer.1.layer_norm.weight', 'decoder.block.13.layer.0.SelfAttention.v.weight', 'decoder.block.7.layer.2.DenseReluDense.wi.weight', 'decoder.block.13.layer.2.DenseReluDense.wi.weight', 'decoder.block.16.layer.1.EncDecAttention.v.weight', 'decoder.block.15.layer.1.layer_norm.weight', 'decoder.block.0.layer.1.EncDecAttention.o.weight', 'decoder.block.19.layer.1.EncDecAttention.v.weight', 'decoder.block.3.layer.1.EncDecAttention.q.weight', 'decoder.block.6.layer.2.DenseReluDense.wo.weight', 'decoder.block.20.layer.0.SelfAttention.v.weight', 'decoder.block.4.layer.0.SelfAttention.v.weight', 'decoder.block.7.layer.1.layer_norm.weight', 'decoder.block.11.layer.0.SelfAttention.o.weight', 'decoder.block.19.layer.1.EncDecAttention.o.weight', 'decoder.block.23.layer.2.DenseReluDense.wo.weight', 'decoder.block.5.layer.0.SelfAttention.o.weight', 'decoder.block.18.layer.1.EncDecAttention.v.weight', 'decoder.block.5.layer.1.EncDecAttention.v.weight', 'decoder.block.1.layer.2.DenseReluDense.wo.weight', 'decoder.block.16.layer.1.layer_norm.weight', 'decoder.block.12.layer.1.EncDecAttention.v.weight', 'decoder.block.17.layer.1.EncDecAttention.o.weight', 'decoder.block.6.layer.0.SelfAttention.k.weight', 'decoder.block.11.layer.0.SelfAttention.k.weight', 'decoder.block.4.layer.2.layer_norm.weight', 'decoder.block.8.layer.1.EncDecAttention.q.weight', 'decoder.block.16.layer.0.SelfAttention.v.weight', 'decoder.block.0.layer.2.layer_norm.weight', 'decoder.block.15.layer.1.EncDecAttention.k.weight', 'decoder.block.19.layer.1.EncDecAttention.k.weight', 'decoder.block.18.layer.0.SelfAttention.q.weight', 'decoder.block.6.layer.1.EncDecAttention.q.weight', 'decoder.block.2.layer.1.EncDecAttention.q.weight', 'decoder.block.17.layer.2.DenseReluDense.wi.weight', 'decoder.block.5.layer.2.layer_norm.weight', 'decoder.block.13.layer.2.layer_norm.weight', 'decoder.block.2.layer.2.layer_norm.weight', 'decoder.block.16.layer.1.EncDecAttention.k.weight', 'decoder.block.18.layer.1.EncDecAttention.q.weight', 'decoder.block.12.layer.1.layer_norm.weight', 'decoder.block.10.layer.1.EncDecAttention.o.weight', 'decoder.block.9.layer.0.SelfAttention.k.weight', 'decoder.block.0.layer.2.DenseReluDense.wo.weight', 'decoder.block.20.layer.1.EncDecAttention.v.weight', 'decoder.block.20.layer.0.SelfAttention.q.weight', 'decoder.block.22.layer.2.DenseReluDense.wo.weight', 'decoder.block.14.layer.1.layer_norm.weight', 'decoder.block.4.layer.1.EncDecAttention.v.weight', 'decoder.block.22.layer.0.SelfAttention.v.weight', 'decoder.block.15.layer.2.layer_norm.weight', 'decoder.block.23.layer.2.DenseReluDense.wi.weight', 'decoder.block.23.layer.1.EncDecAttention.v.weight', 'decoder.block.8.layer.2.DenseReluDense.wo.weight', 'decoder.block.7.layer.0.SelfAttention.v.weight', 'decoder.block.4.layer.1.EncDecAttention.o.weight', 'decoder.block.6.layer.1.EncDecAttention.k.weight', 'decoder.block.3.layer.2.layer_norm.weight', 'decoder.block.7.layer.1.EncDecAttention.o.weight', 'decoder.block.6.layer.0.SelfAttention.q.weight', 'decoder.block.0.layer.0.SelfAttention.k.weight', 'decoder.block.22.layer.0.SelfAttention.q.weight', 'decoder.block.18.layer.2.DenseReluDense.wo.weight', 'decoder.block.10.layer.0.SelfAttention.k.weight', 'decoder.block.4.layer.0.SelfAttention.q.weight', 'decoder.block.20.layer.2.DenseReluDense.wo.weight', 'decoder.block.11.layer.1.EncDecAttention.o.weight', 'decoder.block.3.layer.2.DenseReluDense.wi.weight', 'decoder.block.10.layer.0.SelfAttention.q.weight', 'decoder.block.17.layer.1.layer_norm.weight', 'decoder.block.20.layer.1.layer_norm.weight', 'decoder.block.18.layer.0.layer_norm.weight', 'decoder.block.21.layer.0.SelfAttention.v.weight', 'decoder.block.20.layer.0.SelfAttention.o.weight', 'decoder.block.22.layer.1.EncDecAttention.o.weight', 'decoder.block.21.layer.1.EncDecAttention.q.weight', 'decoder.block.16.layer.2.layer_norm.weight', 'decoder.block.2.layer.1.EncDecAttention.k.weight', 'decoder.block.10.layer.1.EncDecAttention.v.weight', 'decoder.block.10.layer.1.layer_norm.weight', 'decoder.block.3.layer.2.DenseReluDense.wo.weight', 'decoder.block.14.layer.1.EncDecAttention.o.weight', 'decoder.block.16.layer.1.EncDecAttention.o.weight', 'decoder.block.17.layer.1.EncDecAttention.k.weight', 'decoder.block.15.layer.0.SelfAttention.k.weight', 'decoder.block.11.layer.0.layer_norm.weight', 'decoder.block.23.layer.1.EncDecAttention.q.weight', 'decoder.block.13.layer.1.EncDecAttention.q.weight', 'decoder.block.0.layer.1.EncDecAttention.q.weight', 'decoder.block.13.layer.0.layer_norm.weight', 'decoder.block.9.layer.0.SelfAttention.o.weight', 'decoder.block.19.layer.2.DenseReluDense.wo.weight', 'decoder.block.4.layer.1.EncDecAttention.q.weight', 'decoder.block.16.layer.0.layer_norm.weight', 'decoder.block.8.layer.2.DenseReluDense.wi.weight', 'decoder.block.17.layer.2.DenseReluDense.wo.weight', 'decoder.block.7.layer.1.EncDecAttention.k.weight', 'decoder.block.14.layer.2.DenseReluDense.wi.weight', 'decoder.block.6.layer.1.layer_norm.weight', 'decoder.block.17.layer.0.SelfAttention.o.weight', 'decoder.block.19.layer.1.layer_norm.weight', 'decoder.block.13.layer.1.EncDecAttention.k.weight', 'decoder.block.0.layer.0.SelfAttention.o.weight', 'decoder.block.20.layer.1.EncDecAttention.q.weight', 'decoder.block.23.layer.0.SelfAttention.v.weight', 'decoder.block.3.layer.0.SelfAttention.v.weight', 'decoder.block.18.layer.1.EncDecAttention.k.weight', 'decoder.block.1.layer.2.DenseReluDense.wi.weight', 'decoder.block.1.layer.1.EncDecAttention.q.weight', 'decoder.block.6.layer.1.EncDecAttention.o.weight', 'decoder.block.22.layer.0.layer_norm.weight', 'decoder.block.8.layer.0.SelfAttention.v.weight', 'decoder.block.12.layer.1.EncDecAttention.q.weight', 'decoder.block.1.layer.0.SelfAttention.v.weight', 'decoder.block.15.layer.1.EncDecAttention.o.weight', 'decoder.block.6.layer.0.SelfAttention.o.weight', 'decoder.block.15.layer.1.EncDecAttention.q.weight', 'decoder.block.19.layer.2.DenseReluDense.wi.weight', 'decoder.block.12.layer.0.SelfAttention.o.weight', 'decoder.block.14.layer.2.layer_norm.weight', 'decoder.block.22.layer.0.SelfAttention.k.weight', 'decoder.block.13.layer.0.SelfAttention.q.weight', 'decoder.block.11.layer.1.EncDecAttention.v.weight', 'decoder.block.22.layer.1.layer_norm.weight', 'decoder.block.21.layer.0.SelfAttention.q.weight', 'decoder.block.6.layer.2.DenseReluDense.wi.weight', 'decoder.block.12.layer.0.SelfAttention.v.weight', 'decoder.block.21.layer.0.SelfAttention.k.weight', 'decoder.block.19.layer.0.SelfAttention.k.weight', 'decoder.block.10.layer.0.layer_norm.weight', 'decoder.block.2.layer.2.DenseReluDense.wi.weight', 'decoder.block.17.layer.0.SelfAttention.k.weight', 'decoder.block.23.layer.0.layer_norm.weight', 'decoder.block.4.layer.2.DenseReluDense.wi.weight', 'decoder.block.5.layer.1.EncDecAttention.k.weight', 'decoder.block.19.layer.0.SelfAttention.o.weight', 'decoder.block.5.layer.0.SelfAttention.k.weight', 'decoder.block.10.layer.2.DenseReluDense.wo.weight', 'decoder.block.2.layer.0.SelfAttention.q.weight', 'decoder.block.22.layer.1.EncDecAttention.v.weight', 'decoder.block.23.layer.1.layer_norm.weight', 'decoder.block.5.layer.1.layer_norm.weight', 'decoder.block.3.layer.1.EncDecAttention.o.weight', 'decoder.block.14.layer.0.SelfAttention.o.weight', 'decoder.block.17.layer.0.layer_norm.weight', 'decoder.final_layer_norm.weight', 'decoder.block.10.layer.2.DenseReluDense.wi.weight', 'decoder.block.12.layer.0.layer_norm.weight', 'decoder.block.23.layer.1.EncDecAttention.k.weight', 'decoder.block.21.layer.1.EncDecAttention.o.weight', 'decoder.block.13.layer.1.layer_norm.weight', 'decoder.block.1.layer.1.EncDecAttention.k.weight', 'decoder.block.18.layer.0.SelfAttention.v.weight', 'decoder.block.1.layer.0.layer_norm.weight', 'decoder.block.5.layer.0.SelfAttention.v.weight', 'decoder.block.13.layer.2.DenseReluDense.wo.weight', 'decoder.block.8.layer.1.EncDecAttention.v.weight', 'decoder.block.0.layer.0.SelfAttention.v.weight', 'decoder.block.23.layer.0.SelfAttention.k.weight', 'decoder.block.0.layer.0.layer_norm.weight', 'decoder.block.15.layer.0.layer_norm.weight', 'decoder.block.7.layer.2.layer_norm.weight', 'decoder.block.8.layer.0.SelfAttention.k.weight', 'decoder.block.15.layer.2.DenseReluDense.wo.weight', 'decoder.block.8.layer.1.EncDecAttention.o.weight', 'decoder.block.22.layer.0.SelfAttention.o.weight', 'decoder.block.17.layer.0.SelfAttention.q.weight', 'decoder.block.9.layer.0.SelfAttention.v.weight', 'decoder.block.9.layer.1.EncDecAttention.q.weight', 'decoder.block.7.layer.0.layer_norm.weight', 'decoder.block.14.layer.0.layer_norm.weight', 'decoder.block.9.layer.0.SelfAttention.q.weight', 'decoder.block.16.layer.0.SelfAttention.o.weight', 'decoder.block.2.layer.1.EncDecAttention.o.weight', 'decoder.block.20.layer.1.EncDecAttention.k.weight', 'decoder.block.18.layer.2.layer_norm.weight', 'decoder.block.13.layer.1.EncDecAttention.v.weight', 'decoder.block.7.layer.2.DenseReluDense.wo.weight', 'decoder.block.21.layer.2.DenseReluDense.wo.weight', 'decoder.block.15.layer.2.DenseReluDense.wi.weight', 'decoder.block.10.layer.0.SelfAttention.v.weight', 'decoder.block.2.layer.0.SelfAttention.v.weight', 'decoder.block.11.layer.1.EncDecAttention.k.weight', 'decoder.block.22.layer.2.layer_norm.weight', 'decoder.block.2.layer.1.layer_norm.weight', 'decoder.block.8.layer.2.layer_norm.weight', 'decoder.block.8.layer.0.SelfAttention.q.weight', 'decoder.block.12.layer.1.EncDecAttention.k.weight', 'decoder.block.11.layer.0.SelfAttention.v.weight', 'decoder.block.22.layer.1.EncDecAttention.q.weight', 'decoder.block.5.layer.1.EncDecAttention.q.weight', 'decoder.block.11.layer.0.SelfAttention.q.weight', 'decoder.block.1.layer.0.SelfAttention.k.weight', 'decoder.block.20.layer.0.SelfAttention.k.weight', 'decoder.block.6.layer.0.layer_norm.weight', 'decoder.block.6.layer.2.layer_norm.weight', 'decoder.block.21.layer.1.layer_norm.weight', 'decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight', 'decoder.block.20.layer.2.layer_norm.weight', 'decoder.block.19.layer.1.EncDecAttention.q.weight', 'decoder.block.10.layer.1.EncDecAttention.k.weight', 'decoder.block.20.layer.0.layer_norm.weight', 'decoder.block.18.layer.0.SelfAttention.k.weight', 'decoder.block.21.layer.2.DenseReluDense.wi.weight', 'decoder.block.11.layer.1.EncDecAttention.q.weight', 'decoder.block.15.layer.0.SelfAttention.o.weight', 'decoder.block.5.layer.2.DenseReluDense.wo.weight', 'decoder.block.10.layer.1.EncDecAttention.q.weight', 'decoder.block.9.layer.2.layer_norm.weight', 'decoder.block.7.layer.1.EncDecAttention.v.weight', 'decoder.block.9.layer.0.layer_norm.weight', 'decoder.block.16.layer.2.DenseReluDense.wo.weight', 'decoder.block.9.layer.1.layer_norm.weight', 'decoder.block.7.layer.1.EncDecAttention.q.weight', 'decoder.block.1.layer.0.SelfAttention.q.weight', 'decoder.block.18.layer.0.SelfAttention.o.weight', 'decoder.block.1.layer.1.EncDecAttention.v.weight', 'decoder.block.14.layer.1.EncDecAttention.q.weight', 'decoder.block.10.layer.0.SelfAttention.o.weight', 'decoder.block.16.layer.0.SelfAttention.k.weight', 'decoder.block.18.layer.1.EncDecAttention.o.weight', 'decoder.block.11.layer.1.layer_norm.weight', 'decoder.block.2.layer.1.EncDecAttention.v.weight', 'decoder.block.4.layer.0.SelfAttention.k.weight', 'decoder.block.19.layer.0.layer_norm.weight', 'decoder.block.1.layer.1.layer_norm.weight', 'decoder.block.8.layer.0.layer_norm.weight', 'decoder.block.0.layer.1.layer_norm.weight']\n",
|
229 |
+
"- This IS expected if you are initializing T5EncoderModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
230 |
+
"- This IS NOT expected if you are initializing T5EncoderModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "stderr",
|
235 |
+
"output_type": "stream",
|
236 |
+
"text": [
|
237 |
+
"Some weights of T5EncoderModel were not initialized from the model checkpoint at t5-11b and are newly initialized: ['encoder.embed_tokens.weight']\n",
|
238 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"data": {
|
243 |
+
"text/plain": [
|
244 |
+
"{'shared.weight': torch.Size([32128, 1024]),\n",
|
245 |
+
" 'encoder.embed_tokens.weight': torch.Size([32128, 1024]),\n",
|
246 |
+
" 'encoder.block.0.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
247 |
+
" 'encoder.block.0.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
248 |
+
" 'encoder.block.0.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
249 |
+
" 'encoder.block.0.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
250 |
+
" 'encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight': torch.Size([32, 128]),\n",
|
251 |
+
" 'encoder.block.0.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
252 |
+
" 'encoder.block.0.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
253 |
+
" 'encoder.block.0.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
254 |
+
" 'encoder.block.0.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
255 |
+
" 'encoder.block.1.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
256 |
+
" 'encoder.block.1.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
257 |
+
" 'encoder.block.1.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
258 |
+
" 'encoder.block.1.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
259 |
+
" 'encoder.block.1.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
260 |
+
" 'encoder.block.1.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
261 |
+
" 'encoder.block.1.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
262 |
+
" 'encoder.block.1.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
263 |
+
" 'encoder.block.2.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
264 |
+
" 'encoder.block.2.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
265 |
+
" 'encoder.block.2.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
266 |
+
" 'encoder.block.2.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
267 |
+
" 'encoder.block.2.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
268 |
+
" 'encoder.block.2.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
269 |
+
" 'encoder.block.2.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
270 |
+
" 'encoder.block.2.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
271 |
+
" 'encoder.block.3.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
272 |
+
" 'encoder.block.3.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
273 |
+
" 'encoder.block.3.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
274 |
+
" 'encoder.block.3.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
275 |
+
" 'encoder.block.3.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
276 |
+
" 'encoder.block.3.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
277 |
+
" 'encoder.block.3.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
278 |
+
" 'encoder.block.3.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
279 |
+
" 'encoder.block.4.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
280 |
+
" 'encoder.block.4.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
281 |
+
" 'encoder.block.4.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
282 |
+
" 'encoder.block.4.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
283 |
+
" 'encoder.block.4.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
284 |
+
" 'encoder.block.4.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
285 |
+
" 'encoder.block.4.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
286 |
+
" 'encoder.block.4.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
287 |
+
" 'encoder.block.5.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
288 |
+
" 'encoder.block.5.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
289 |
+
" 'encoder.block.5.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
290 |
+
" 'encoder.block.5.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
291 |
+
" 'encoder.block.5.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
292 |
+
" 'encoder.block.5.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
293 |
+
" 'encoder.block.5.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
294 |
+
" 'encoder.block.5.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
295 |
+
" 'encoder.block.6.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
296 |
+
" 'encoder.block.6.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
297 |
+
" 'encoder.block.6.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
298 |
+
" 'encoder.block.6.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
299 |
+
" 'encoder.block.6.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
300 |
+
" 'encoder.block.6.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
301 |
+
" 'encoder.block.6.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
302 |
+
" 'encoder.block.6.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
303 |
+
" 'encoder.block.7.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
304 |
+
" 'encoder.block.7.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
305 |
+
" 'encoder.block.7.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
306 |
+
" 'encoder.block.7.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
307 |
+
" 'encoder.block.7.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
308 |
+
" 'encoder.block.7.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
309 |
+
" 'encoder.block.7.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
310 |
+
" 'encoder.block.7.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
311 |
+
" 'encoder.block.8.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
312 |
+
" 'encoder.block.8.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
313 |
+
" 'encoder.block.8.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
314 |
+
" 'encoder.block.8.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
315 |
+
" 'encoder.block.8.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
316 |
+
" 'encoder.block.8.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
317 |
+
" 'encoder.block.8.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
318 |
+
" 'encoder.block.8.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
319 |
+
" 'encoder.block.9.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
320 |
+
" 'encoder.block.9.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
321 |
+
" 'encoder.block.9.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
322 |
+
" 'encoder.block.9.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
323 |
+
" 'encoder.block.9.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
324 |
+
" 'encoder.block.9.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
325 |
+
" 'encoder.block.9.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
326 |
+
" 'encoder.block.9.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
327 |
+
" 'encoder.block.10.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
328 |
+
" 'encoder.block.10.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
329 |
+
" 'encoder.block.10.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
330 |
+
" 'encoder.block.10.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
331 |
+
" 'encoder.block.10.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
332 |
+
" 'encoder.block.10.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
333 |
+
" 'encoder.block.10.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
334 |
+
" 'encoder.block.10.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
335 |
+
" 'encoder.block.11.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
336 |
+
" 'encoder.block.11.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
337 |
+
" 'encoder.block.11.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
338 |
+
" 'encoder.block.11.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
339 |
+
" 'encoder.block.11.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
340 |
+
" 'encoder.block.11.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
341 |
+
" 'encoder.block.11.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
342 |
+
" 'encoder.block.11.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
343 |
+
" 'encoder.block.12.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
344 |
+
" 'encoder.block.12.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
345 |
+
" 'encoder.block.12.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
346 |
+
" 'encoder.block.12.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
347 |
+
" 'encoder.block.12.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
348 |
+
" 'encoder.block.12.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
349 |
+
" 'encoder.block.12.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
350 |
+
" 'encoder.block.12.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
351 |
+
" 'encoder.block.13.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
352 |
+
" 'encoder.block.13.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
353 |
+
" 'encoder.block.13.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
354 |
+
" 'encoder.block.13.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
355 |
+
" 'encoder.block.13.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
356 |
+
" 'encoder.block.13.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
357 |
+
" 'encoder.block.13.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
358 |
+
" 'encoder.block.13.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
359 |
+
" 'encoder.block.14.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
360 |
+
" 'encoder.block.14.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
361 |
+
" 'encoder.block.14.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
362 |
+
" 'encoder.block.14.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
363 |
+
" 'encoder.block.14.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
364 |
+
" 'encoder.block.14.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
365 |
+
" 'encoder.block.14.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
366 |
+
" 'encoder.block.14.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
367 |
+
" 'encoder.block.15.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
368 |
+
" 'encoder.block.15.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
369 |
+
" 'encoder.block.15.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
370 |
+
" 'encoder.block.15.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
371 |
+
" 'encoder.block.15.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
372 |
+
" 'encoder.block.15.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
373 |
+
" 'encoder.block.15.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
374 |
+
" 'encoder.block.15.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
375 |
+
" 'encoder.block.16.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
376 |
+
" 'encoder.block.16.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
377 |
+
" 'encoder.block.16.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
378 |
+
" 'encoder.block.16.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
379 |
+
" 'encoder.block.16.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
380 |
+
" 'encoder.block.16.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
381 |
+
" 'encoder.block.16.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
382 |
+
" 'encoder.block.16.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
383 |
+
" 'encoder.block.17.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
384 |
+
" 'encoder.block.17.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
385 |
+
" 'encoder.block.17.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
386 |
+
" 'encoder.block.17.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
387 |
+
" 'encoder.block.17.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
388 |
+
" 'encoder.block.17.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
389 |
+
" 'encoder.block.17.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
390 |
+
" 'encoder.block.17.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
391 |
+
" 'encoder.block.18.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
392 |
+
" 'encoder.block.18.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
393 |
+
" 'encoder.block.18.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
394 |
+
" 'encoder.block.18.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
395 |
+
" 'encoder.block.18.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
396 |
+
" 'encoder.block.18.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
397 |
+
" 'encoder.block.18.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
398 |
+
" 'encoder.block.18.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
399 |
+
" 'encoder.block.19.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
400 |
+
" 'encoder.block.19.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
401 |
+
" 'encoder.block.19.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
402 |
+
" 'encoder.block.19.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
403 |
+
" 'encoder.block.19.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
404 |
+
" 'encoder.block.19.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
405 |
+
" 'encoder.block.19.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
406 |
+
" 'encoder.block.19.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
407 |
+
" 'encoder.block.20.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
408 |
+
" 'encoder.block.20.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
409 |
+
" 'encoder.block.20.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
410 |
+
" 'encoder.block.20.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
411 |
+
" 'encoder.block.20.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
412 |
+
" 'encoder.block.20.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
413 |
+
" 'encoder.block.20.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
414 |
+
" 'encoder.block.20.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
415 |
+
" 'encoder.block.21.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
416 |
+
" 'encoder.block.21.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
417 |
+
" 'encoder.block.21.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
418 |
+
" 'encoder.block.21.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
419 |
+
" 'encoder.block.21.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
420 |
+
" 'encoder.block.21.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
421 |
+
" 'encoder.block.21.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
422 |
+
" 'encoder.block.21.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
423 |
+
" 'encoder.block.22.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
424 |
+
" 'encoder.block.22.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
425 |
+
" 'encoder.block.22.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
426 |
+
" 'encoder.block.22.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
427 |
+
" 'encoder.block.22.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
428 |
+
" 'encoder.block.22.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
429 |
+
" 'encoder.block.22.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
430 |
+
" 'encoder.block.22.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
431 |
+
" 'encoder.block.23.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
432 |
+
" 'encoder.block.23.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
433 |
+
" 'encoder.block.23.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
434 |
+
" 'encoder.block.23.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
435 |
+
" 'encoder.block.23.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
436 |
+
" 'encoder.block.23.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
437 |
+
" 'encoder.block.23.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
438 |
+
" 'encoder.block.23.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
439 |
+
" 'encoder.final_layer_norm.weight': torch.Size([1024])}"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
"execution_count": 7,
|
443 |
+
"metadata": {},
|
444 |
+
"output_type": "execute_result"
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"source": [
|
448 |
+
"tokenizer = AutoTokenizer.from_pretrained(f\"t5-{model_size_hf}\")\n",
|
449 |
+
"t5 = T5EncoderModel.from_pretrained(f\"t5-{model_size_hf}\") \n",
|
450 |
+
"pt_name_shape = {name: weight.shape for name, weight in t5.state_dict().items()}\n",
|
451 |
+
"pt_name_shape"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 8,
|
457 |
+
"id": "1d3c9865",
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [],
|
460 |
+
"source": [
|
461 |
+
"def convert_name(name):\n",
|
462 |
+
" fct_map = {\n",
|
463 |
+
" \"attention\": \"SelfAttention\",\n",
|
464 |
+
" \"mlp\": \"DenseReluDense\",\n",
|
465 |
+
" \"pre_attention_layer_norm\": \"layer_norm\",\n",
|
466 |
+
" \"pre_mlp_layer_norm\": \"layer_norm\",\n",
|
467 |
+
" }\n",
|
468 |
+
" name_map = {\n",
|
469 |
+
" 'key': 'k',\n",
|
470 |
+
" 'out': 'o',\n",
|
471 |
+
" 'query': 'q',\n",
|
472 |
+
" 'value': 'v'\n",
|
473 |
+
" }\n",
|
474 |
+
" \n",
|
475 |
+
" fixed_names = {\n",
|
476 |
+
" \"token_embedder__embedding:0\": \"shared.weight\",\n",
|
477 |
+
" \"encoder__encoder_norm__scale:0\": \"encoder.final_layer_norm.weight\",\n",
|
478 |
+
" \"encoder__relpos_bias__rel_embedding:0\": \"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight\"\n",
|
479 |
+
" }\n",
|
480 |
+
" \n",
|
481 |
+
" if name in fixed_names:\n",
|
482 |
+
" return fixed_names[name]\n",
|
483 |
+
" \n",
|
484 |
+
" out = \"\"\n",
|
485 |
+
" splits = name.split(\"__\")\n",
|
486 |
+
" layer = splits[1].split(\"_\")[1]\n",
|
487 |
+
" fct = fct_map.get(splits[2], splits[2])\n",
|
488 |
+
" if 'layer_norm' in name:\n",
|
489 |
+
" sublayer = \"1\" if \"pre_mlp_layer_norm\" in name else \"0\" #Not sure on the right setting here\n",
|
490 |
+
" #sublayer = \"0\" if \"pre_mlp_layer_norm\" in name else \"1\" #Not sure on the right setting here\n",
|
491 |
+
" out = f\"encoder.block.{layer}.layer.{sublayer}.{fct}.weight\"\n",
|
492 |
+
" elif name.startswith(\"encoder__layers_\"):\n",
|
493 |
+
" sublayer = \"0\" if fct == \"SelfAttention\" else \"1\"\n",
|
494 |
+
" name = name_map.get(splits[3], splits[3])\n",
|
495 |
+
" out = f\"encoder.block.{layer}.layer.{sublayer}.{fct}.{name}.weight\"\n",
|
496 |
+
" \n",
|
497 |
+
" return out"
|
498 |
+
]
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"cell_type": "code",
|
502 |
+
"execution_count": 9,
|
503 |
+
"id": "1ca9590e",
|
504 |
+
"metadata": {},
|
505 |
+
"outputs": [],
|
506 |
+
"source": [
|
507 |
+
"def equal_shapes(shape1, shape2):\n",
|
508 |
+
" if len(shape1) != len(shape2):\n",
|
509 |
+
" return False\n",
|
510 |
+
" \n",
|
511 |
+
" for idx in range(len(shape1)):\n",
|
512 |
+
" if shape1[idx] != shape2[idx]:\n",
|
513 |
+
" return False\n",
|
514 |
+
" \n",
|
515 |
+
" return True"
|
516 |
+
]
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"cell_type": "code",
|
520 |
+
"execution_count": 10,
|
521 |
+
"id": "ced52a5f",
|
522 |
+
"metadata": {},
|
523 |
+
"outputs": [
|
524 |
+
{
|
525 |
+
"name": "stdout",
|
526 |
+
"output_type": "stream",
|
527 |
+
"text": [
|
528 |
+
"Remaining weights: {'encoder.embed_tokens.weight'}\n"
|
529 |
+
]
|
530 |
+
}
|
531 |
+
],
|
532 |
+
"source": [
|
533 |
+
"def need_transpose(name):\n",
|
534 |
+
" #HF function: https://github.com/huggingface/transformers/blob/c962c2adbff678ae6d2e98378bed5b8d1a9831d9/src/transformers/models/t5/modeling_t5.py#L161\n",
|
535 |
+
" return name != \"shared.weight\"\n",
|
536 |
+
"\n",
|
537 |
+
" \n",
|
538 |
+
"\n",
|
539 |
+
"names_to_ignore = {\"projection_layer__kernel:0\"}\n",
|
540 |
+
"#Additional dense layer on top\n",
|
541 |
+
"\n",
|
542 |
+
"#Check we used all names\n",
|
543 |
+
"pt_all_names = set(t5.state_dict().keys())\n",
|
544 |
+
"\n",
|
545 |
+
"for var in v:\n",
|
546 |
+
" name = var.name\n",
|
547 |
+
" if name in names_to_ignore:\n",
|
548 |
+
" continue\n",
|
549 |
+
" \n",
|
550 |
+
" pt_name = convert_name(name)\n",
|
551 |
+
" if pt_name not in pt_all_names:\n",
|
552 |
+
" print(\"Name not found:\", name, \"=>\", pt_name)\n",
|
553 |
+
" else:\n",
|
554 |
+
" pt_all_names.remove(pt_name)\n",
|
555 |
+
" tf_shape = tf_name_shape[name].as_list()\n",
|
556 |
+
" pt_shape = list(pt_name_shape[pt_name])\n",
|
557 |
+
" \n",
|
558 |
+
" if need_transpose(pt_name):\n",
|
559 |
+
" pt_shape = list(reversed(pt_shape))\n",
|
560 |
+
" \n",
|
561 |
+
" if not equal_shapes(tf_shape, pt_shape):\n",
|
562 |
+
" print(\"Different shape:\", name, tf_shape, pt_name, pt_shape )\n",
|
563 |
+
" \n",
|
564 |
+
"print(\"Remaining weights:\", pt_all_names)\n",
|
565 |
+
"#All layers match"
|
566 |
+
]
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"cell_type": "code",
|
570 |
+
"execution_count": 11,
|
571 |
+
"id": "1190984f",
|
572 |
+
"metadata": {},
|
573 |
+
"outputs": [
|
574 |
+
{
|
575 |
+
"name": "stderr",
|
576 |
+
"output_type": "stream",
|
577 |
+
"text": [
|
578 |
+
"Some weights of T5EncoderModel were not initialized from the model checkpoint at t5-11b and are newly initialized: ['encoder.embed_tokens.weight']\n",
|
579 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"name": "stdout",
|
584 |
+
"output_type": "stream",
|
585 |
+
"text": [
|
586 |
+
"encoder__encoder_norm__scale:0 ((1024,)) =transpose=> encoder.final_layer_norm.weight torch.Size([1024])\n",
|
587 |
+
"encoder__layers_0__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
588 |
+
"encoder__layers_0__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.0.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
589 |
+
"encoder__layers_0__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
590 |
+
"encoder__layers_0__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
591 |
+
"encoder__layers_0__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.0.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
592 |
+
"encoder__layers_0__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.0.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
593 |
+
"encoder__layers_0__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.0.layer.0.layer_norm.weight torch.Size([1024])\n",
|
594 |
+
"encoder__layers_0__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.0.layer.1.layer_norm.weight torch.Size([1024])\n",
|
595 |
+
"encoder__layers_1__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
596 |
+
"encoder__layers_1__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.1.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
597 |
+
"encoder__layers_1__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
598 |
+
"encoder__layers_1__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
599 |
+
"encoder__layers_1__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.1.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
600 |
+
"encoder__layers_1__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.1.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
601 |
+
"encoder__layers_1__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.1.layer.0.layer_norm.weight torch.Size([1024])\n",
|
602 |
+
"encoder__layers_1__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.1.layer.1.layer_norm.weight torch.Size([1024])\n",
|
603 |
+
"encoder__layers_10__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
604 |
+
"encoder__layers_10__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.10.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
605 |
+
"encoder__layers_10__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
606 |
+
"encoder__layers_10__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
607 |
+
"encoder__layers_10__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.10.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
608 |
+
"encoder__layers_10__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.10.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
609 |
+
"encoder__layers_10__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.10.layer.0.layer_norm.weight torch.Size([1024])\n",
|
610 |
+
"encoder__layers_10__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.10.layer.1.layer_norm.weight torch.Size([1024])\n",
|
611 |
+
"encoder__layers_11__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
612 |
+
"encoder__layers_11__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.11.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
613 |
+
"encoder__layers_11__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
614 |
+
"encoder__layers_11__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
615 |
+
"encoder__layers_11__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.11.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
616 |
+
"encoder__layers_11__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.11.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
617 |
+
"encoder__layers_11__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.11.layer.0.layer_norm.weight torch.Size([1024])\n",
|
618 |
+
"encoder__layers_11__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.11.layer.1.layer_norm.weight torch.Size([1024])\n",
|
619 |
+
"encoder__layers_12__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
620 |
+
"encoder__layers_12__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.12.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
621 |
+
"encoder__layers_12__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
622 |
+
"encoder__layers_12__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
623 |
+
"encoder__layers_12__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.12.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
624 |
+
"encoder__layers_12__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.12.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
625 |
+
"encoder__layers_12__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.12.layer.0.layer_norm.weight torch.Size([1024])\n",
|
626 |
+
"encoder__layers_12__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.12.layer.1.layer_norm.weight torch.Size([1024])\n",
|
627 |
+
"encoder__layers_13__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
628 |
+
"encoder__layers_13__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.13.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
629 |
+
"encoder__layers_13__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
630 |
+
"encoder__layers_13__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
631 |
+
"encoder__layers_13__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.13.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
632 |
+
"encoder__layers_13__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.13.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
633 |
+
"encoder__layers_13__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.13.layer.0.layer_norm.weight torch.Size([1024])\n",
|
634 |
+
"encoder__layers_13__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.13.layer.1.layer_norm.weight torch.Size([1024])\n",
|
635 |
+
"encoder__layers_14__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
636 |
+
"encoder__layers_14__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.14.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
637 |
+
"encoder__layers_14__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
638 |
+
"encoder__layers_14__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
639 |
+
"encoder__layers_14__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.14.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
640 |
+
"encoder__layers_14__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.14.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
641 |
+
"encoder__layers_14__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.14.layer.0.layer_norm.weight torch.Size([1024])\n",
|
642 |
+
"encoder__layers_14__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.14.layer.1.layer_norm.weight torch.Size([1024])\n",
|
643 |
+
"encoder__layers_15__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n"
|
644 |
+
]
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"name": "stdout",
|
648 |
+
"output_type": "stream",
|
649 |
+
"text": [
|
650 |
+
"encoder__layers_15__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.15.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
651 |
+
"encoder__layers_15__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
652 |
+
"encoder__layers_15__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
653 |
+
"encoder__layers_15__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.15.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
654 |
+
"encoder__layers_15__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.15.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
655 |
+
"encoder__layers_15__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.15.layer.0.layer_norm.weight torch.Size([1024])\n",
|
656 |
+
"encoder__layers_15__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.15.layer.1.layer_norm.weight torch.Size([1024])\n",
|
657 |
+
"encoder__layers_16__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
658 |
+
"encoder__layers_16__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.16.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
659 |
+
"encoder__layers_16__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
660 |
+
"encoder__layers_16__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
661 |
+
"encoder__layers_16__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.16.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
662 |
+
"encoder__layers_16__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.16.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
663 |
+
"encoder__layers_16__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.16.layer.0.layer_norm.weight torch.Size([1024])\n",
|
664 |
+
"encoder__layers_16__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.16.layer.1.layer_norm.weight torch.Size([1024])\n",
|
665 |
+
"encoder__layers_17__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
666 |
+
"encoder__layers_17__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.17.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
667 |
+
"encoder__layers_17__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
668 |
+
"encoder__layers_17__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
669 |
+
"encoder__layers_17__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.17.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
670 |
+
"encoder__layers_17__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.17.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
671 |
+
"encoder__layers_17__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.17.layer.0.layer_norm.weight torch.Size([1024])\n",
|
672 |
+
"encoder__layers_17__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.17.layer.1.layer_norm.weight torch.Size([1024])\n",
|
673 |
+
"encoder__layers_18__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
674 |
+
"encoder__layers_18__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.18.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
675 |
+
"encoder__layers_18__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
676 |
+
"encoder__layers_18__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
677 |
+
"encoder__layers_18__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.18.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
678 |
+
"encoder__layers_18__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.18.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
679 |
+
"encoder__layers_18__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.18.layer.0.layer_norm.weight torch.Size([1024])\n",
|
680 |
+
"encoder__layers_18__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.18.layer.1.layer_norm.weight torch.Size([1024])\n",
|
681 |
+
"encoder__layers_19__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
682 |
+
"encoder__layers_19__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.19.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
683 |
+
"encoder__layers_19__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
684 |
+
"encoder__layers_19__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
685 |
+
"encoder__layers_19__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.19.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
686 |
+
"encoder__layers_19__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.19.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
687 |
+
"encoder__layers_19__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.19.layer.0.layer_norm.weight torch.Size([1024])\n",
|
688 |
+
"encoder__layers_19__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.19.layer.1.layer_norm.weight torch.Size([1024])\n",
|
689 |
+
"encoder__layers_2__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
690 |
+
"encoder__layers_2__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.2.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
691 |
+
"encoder__layers_2__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
692 |
+
"encoder__layers_2__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
693 |
+
"encoder__layers_2__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.2.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
694 |
+
"encoder__layers_2__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.2.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
695 |
+
"encoder__layers_2__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.2.layer.0.layer_norm.weight torch.Size([1024])\n",
|
696 |
+
"encoder__layers_2__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.2.layer.1.layer_norm.weight torch.Size([1024])\n",
|
697 |
+
"encoder__layers_20__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
698 |
+
"encoder__layers_20__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.20.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
699 |
+
"encoder__layers_20__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
700 |
+
"encoder__layers_20__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
701 |
+
"encoder__layers_20__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.20.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
702 |
+
"encoder__layers_20__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.20.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
703 |
+
"encoder__layers_20__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.20.layer.0.layer_norm.weight torch.Size([1024])\n",
|
704 |
+
"encoder__layers_20__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.20.layer.1.layer_norm.weight torch.Size([1024])\n",
|
705 |
+
"encoder__layers_21__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
706 |
+
"encoder__layers_21__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.21.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n"
|
707 |
+
]
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"name": "stdout",
|
711 |
+
"output_type": "stream",
|
712 |
+
"text": [
|
713 |
+
"encoder__layers_21__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
714 |
+
"encoder__layers_21__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
715 |
+
"encoder__layers_21__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.21.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
716 |
+
"encoder__layers_21__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.21.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
717 |
+
"encoder__layers_21__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.21.layer.0.layer_norm.weight torch.Size([1024])\n",
|
718 |
+
"encoder__layers_21__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.21.layer.1.layer_norm.weight torch.Size([1024])\n",
|
719 |
+
"encoder__layers_22__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
720 |
+
"encoder__layers_22__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.22.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
721 |
+
"encoder__layers_22__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
722 |
+
"encoder__layers_22__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
723 |
+
"encoder__layers_22__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.22.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
724 |
+
"encoder__layers_22__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.22.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
725 |
+
"encoder__layers_22__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.22.layer.0.layer_norm.weight torch.Size([1024])\n",
|
726 |
+
"encoder__layers_22__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.22.layer.1.layer_norm.weight torch.Size([1024])\n",
|
727 |
+
"encoder__layers_23__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
728 |
+
"encoder__layers_23__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.23.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
729 |
+
"encoder__layers_23__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
730 |
+
"encoder__layers_23__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
731 |
+
"encoder__layers_23__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.23.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
732 |
+
"encoder__layers_23__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.23.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
733 |
+
"encoder__layers_23__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.23.layer.0.layer_norm.weight torch.Size([1024])\n",
|
734 |
+
"encoder__layers_23__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.23.layer.1.layer_norm.weight torch.Size([1024])\n",
|
735 |
+
"encoder__layers_3__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
736 |
+
"encoder__layers_3__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.3.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
737 |
+
"encoder__layers_3__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
738 |
+
"encoder__layers_3__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
739 |
+
"encoder__layers_3__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.3.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
740 |
+
"encoder__layers_3__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.3.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
741 |
+
"encoder__layers_3__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.3.layer.0.layer_norm.weight torch.Size([1024])\n",
|
742 |
+
"encoder__layers_3__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.3.layer.1.layer_norm.weight torch.Size([1024])\n",
|
743 |
+
"encoder__layers_4__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
744 |
+
"encoder__layers_4__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.4.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
745 |
+
"encoder__layers_4__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
746 |
+
"encoder__layers_4__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
747 |
+
"encoder__layers_4__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.4.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
748 |
+
"encoder__layers_4__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.4.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
749 |
+
"encoder__layers_4__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.4.layer.0.layer_norm.weight torch.Size([1024])\n",
|
750 |
+
"encoder__layers_4__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.4.layer.1.layer_norm.weight torch.Size([1024])\n",
|
751 |
+
"encoder__layers_5__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
752 |
+
"encoder__layers_5__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.5.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
753 |
+
"encoder__layers_5__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
754 |
+
"encoder__layers_5__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
755 |
+
"encoder__layers_5__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.5.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
756 |
+
"encoder__layers_5__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.5.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
757 |
+
"encoder__layers_5__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.5.layer.0.layer_norm.weight torch.Size([1024])\n",
|
758 |
+
"encoder__layers_5__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.5.layer.1.layer_norm.weight torch.Size([1024])\n",
|
759 |
+
"encoder__layers_6__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
760 |
+
"encoder__layers_6__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.6.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
761 |
+
"encoder__layers_6__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
762 |
+
"encoder__layers_6__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
763 |
+
"encoder__layers_6__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.6.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
764 |
+
"encoder__layers_6__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.6.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
765 |
+
"encoder__layers_6__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.6.layer.0.layer_norm.weight torch.Size([1024])\n",
|
766 |
+
"encoder__layers_6__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.6.layer.1.layer_norm.weight torch.Size([1024])\n",
|
767 |
+
"encoder__layers_7__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
768 |
+
"encoder__layers_7__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.7.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
769 |
+
"encoder__layers_7__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
770 |
+
"encoder__layers_7__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n"
|
771 |
+
]
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"name": "stdout",
|
775 |
+
"output_type": "stream",
|
776 |
+
"text": [
|
777 |
+
"encoder__layers_7__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.7.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
778 |
+
"encoder__layers_7__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.7.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
779 |
+
"encoder__layers_7__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.7.layer.0.layer_norm.weight torch.Size([1024])\n",
|
780 |
+
"encoder__layers_7__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.7.layer.1.layer_norm.weight torch.Size([1024])\n",
|
781 |
+
"encoder__layers_8__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
782 |
+
"encoder__layers_8__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.8.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
783 |
+
"encoder__layers_8__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
784 |
+
"encoder__layers_8__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
785 |
+
"encoder__layers_8__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.8.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
786 |
+
"encoder__layers_8__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.8.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
787 |
+
"encoder__layers_8__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.8.layer.0.layer_norm.weight torch.Size([1024])\n",
|
788 |
+
"encoder__layers_8__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.8.layer.1.layer_norm.weight torch.Size([1024])\n",
|
789 |
+
"encoder__layers_9__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
790 |
+
"encoder__layers_9__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.9.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
791 |
+
"encoder__layers_9__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
792 |
+
"encoder__layers_9__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
793 |
+
"encoder__layers_9__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.9.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
794 |
+
"encoder__layers_9__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.9.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
795 |
+
"encoder__layers_9__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.9.layer.0.layer_norm.weight torch.Size([1024])\n",
|
796 |
+
"encoder__layers_9__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.9.layer.1.layer_norm.weight torch.Size([1024])\n",
|
797 |
+
"encoder__relpos_bias__rel_embedding:0 ((128, 32)) =transpose=> encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight torch.Size([32, 128])\n",
|
798 |
+
"token_embedder__embedding:0 ((32128, 1024)) => shared.weight torch.Size([32128, 1024])\n",
|
799 |
+
"Linear(in_features=1024, out_features=768, bias=False)\n",
|
800 |
+
"Remaining weights: set()\n"
|
801 |
+
]
|
802 |
+
}
|
803 |
+
],
|
804 |
+
"source": [
|
805 |
+
"import torch\n",
|
806 |
+
"tokenizer = AutoTokenizer.from_pretrained(f\"t5-{model_size_hf}\")\n",
|
807 |
+
"T5EncoderModel._keys_to_ignore_on_load_unexpected = [\"decoder.*\"]\n",
|
808 |
+
"t5 = T5EncoderModel.from_pretrained(f\"t5-{model_size_hf}\")\n",
|
809 |
+
"t5_state = t5.state_dict()\n",
|
810 |
+
"\n",
|
811 |
+
"state_all_names = set(t5_state.keys())\n",
|
812 |
+
"\n",
|
813 |
+
"for var in v:\n",
|
814 |
+
" tf_name = var.name\n",
|
815 |
+
" if tf_name in names_to_ignore:\n",
|
816 |
+
" continue\n",
|
817 |
+
" \n",
|
818 |
+
" pt_name = convert_name(tf_name)\n",
|
819 |
+
" weights = np.float32(var.numpy())\n",
|
820 |
+
" \n",
|
821 |
+
" state_all_names.remove(pt_name)\n",
|
822 |
+
" \n",
|
823 |
+
" tranpose_status = \"=>\"\n",
|
824 |
+
" if need_transpose(pt_name):\n",
|
825 |
+
" tranpose_status = \"=transpose=>\"\n",
|
826 |
+
" weights = weights.transpose()\n",
|
827 |
+
" \n",
|
828 |
+
" print(tf_name, f\"({var.shape})\", tranpose_status, pt_name, t5_state[pt_name].shape)\n",
|
829 |
+
" \n",
|
830 |
+
" original_shape = t5_state[pt_name].shape\n",
|
831 |
+
" t5_state[pt_name] = torch.nn.Parameter(torch.tensor(weights))\n",
|
832 |
+
" new_shape = t5_state[pt_name].shape\n",
|
833 |
+
" \n",
|
834 |
+
" if not equal_shapes(original_shape, new_shape):\n",
|
835 |
+
" print(\"Different shape:\", tf_name, original_shape, pt_name, new_shape)\n",
|
836 |
+
" break\n",
|
837 |
+
"\n",
|
838 |
+
"#Encoder Word embeddings\n",
|
839 |
+
"t5_state['encoder.embed_tokens.weight'] = t5_state['shared.weight']\n",
|
840 |
+
"state_all_names.remove('encoder.embed_tokens.weight')\n",
|
841 |
+
" \n",
|
842 |
+
"#Load back the weights\n",
|
843 |
+
"t5.load_state_dict(t5_state) \n",
|
844 |
+
"\n",
|
845 |
+
"tf_linear_weight = tf_name_weight[\"projection_layer__kernel:0\"]\n",
|
846 |
+
"linear = torch.nn.Linear(tf_linear_weight.shape[0], tf_linear_weight.shape[1], bias=False)\n",
|
847 |
+
"original_shape = linear.weight.shape\n",
|
848 |
+
"linear.weight = torch.nn.Parameter(torch.tensor(np.float32(tf_linear_weight.numpy()).transpose()))\n",
|
849 |
+
"new_shape = linear.weight.shape\n",
|
850 |
+
"if not equal_shapes(original_shape, new_shape):\n",
|
851 |
+
" print(\"Different shape at linear layer\")\n",
|
852 |
+
" \n",
|
853 |
+
"print(linear)\n",
|
854 |
+
"print(\"Remaining weights:\", state_all_names)\n",
|
855 |
+
"assert len(state_all_names) == 0\n"
|
856 |
+
]
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"cell_type": "code",
|
860 |
+
"execution_count": 12,
|
861 |
+
"id": "d59d5a2c",
|
862 |
+
"metadata": {},
|
863 |
+
"outputs": [
|
864 |
+
{
|
865 |
+
"name": "stdout",
|
866 |
+
"output_type": "stream",
|
867 |
+
"text": [
|
868 |
+
"torch.Size([8, 768])\n"
|
869 |
+
]
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"data": {
|
873 |
+
"text/plain": [
|
874 |
+
"tensor([[1.0000, 0.8303, 0.2995, 0.3906, 0.2986, 0.3062, 0.3430, 0.3734],\n",
|
875 |
+
" [0.8303, 1.0000, 0.3455, 0.4187, 0.3043, 0.3464, 0.4388, 0.3959],\n",
|
876 |
+
" [0.2995, 0.3455, 1.0000, 0.6648, 0.4726, 0.4597, 0.3798, 0.3454],\n",
|
877 |
+
" [0.3906, 0.4187, 0.6648, 1.0000, 0.5167, 0.5195, 0.3746, 0.4006],\n",
|
878 |
+
" [0.2986, 0.3043, 0.4726, 0.5167, 1.0000, 0.7602, 0.3923, 0.3550],\n",
|
879 |
+
" [0.3062, 0.3464, 0.4597, 0.5195, 0.7602, 1.0000, 0.4338, 0.3432],\n",
|
880 |
+
" [0.3430, 0.4388, 0.3798, 0.3746, 0.3923, 0.4338, 1.0000, 0.6090],\n",
|
881 |
+
" [0.3734, 0.3959, 0.3454, 0.4006, 0.3550, 0.3432, 0.6090, 1.0000]])"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
"execution_count": 12,
|
885 |
+
"metadata": {},
|
886 |
+
"output_type": "execute_result"
|
887 |
+
}
|
888 |
+
],
|
889 |
+
"source": [
|
890 |
+
"english_sentences = [\"Berlin is the capital of Germany\", \"Berlin is a large city in Germany\",\n",
|
891 |
+
" \"Tensorflow can be used for deep learning\", \"Pytorch, developed by Facebook AI, is a deep learning framework\",\n",
|
892 |
+
" \"Is Scipy or numpy better?\", \"Which is faster: scipy or pandas?\",\n",
|
893 |
+
" \"Cats can live for quite a long time\", \"Cats are humans best friend\"]\n",
|
894 |
+
"\n",
|
895 |
+
"encoded_input = tokenizer(english_sentences, return_tensors=\"pt\", padding=True)\n",
|
896 |
+
"\n",
|
897 |
+
"with torch.no_grad():\n",
|
898 |
+
" model_output = t5(**encoded_input)\n",
|
899 |
+
" \n",
|
900 |
+
" # Perform pooling\n",
|
901 |
+
" hf_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])\n",
|
902 |
+
"\n",
|
903 |
+
" # Apply linear layer\n",
|
904 |
+
" hf_embeddings = linear(hf_embeddings)\n",
|
905 |
+
" \n",
|
906 |
+
" print(hf_embeddings.shape)\n",
|
907 |
+
"\n",
|
908 |
+
" # Normalize embeddings\n",
|
909 |
+
" hf_embeddings = F.normalize(hf_embeddings, p=2, dim=1)\n",
|
910 |
+
"\n",
|
911 |
+
"# Cos\n",
|
912 |
+
"util.dot_score(hf_embeddings, hf_embeddings)"
|
913 |
+
]
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"cell_type": "code",
|
917 |
+
"execution_count": 13,
|
918 |
+
"id": "677a8bab",
|
919 |
+
"metadata": {},
|
920 |
+
"outputs": [
|
921 |
+
{
|
922 |
+
"name": "stderr",
|
923 |
+
"output_type": "stream",
|
924 |
+
"text": [
|
925 |
+
"2022-01-31 23:13:39.702310: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)\n",
|
926 |
+
"2022-01-31 23:13:41.448337: I tensorflow/compiler/xla/service/service.cc:171] XLA service 0x7f41641cf460 initialized for platform Host (this does not guarantee that XLA will be used). Devices:\n",
|
927 |
+
"2022-01-31 23:13:41.448385: I tensorflow/compiler/xla/service/service.cc:179] StreamExecutor device (0): Host, Default Version\n",
|
928 |
+
"2022-01-31 23:13:44.375222: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:210] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
|
929 |
+
"2022-01-31 23:14:17.816928: I tensorflow/compiler/jit/xla_compilation_cache.cc:363] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n",
|
930 |
+
"2022-01-31 23:14:17.866550: W tensorflow/core/framework/cpu_allocator_impl.cc:80] Allocation of 3089104896 exceeds 10% of free system memory.\n"
|
931 |
+
]
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"name": "stdout",
|
935 |
+
"output_type": "stream",
|
936 |
+
"text": [
|
937 |
+
"(8, 768)\n"
|
938 |
+
]
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"data": {
|
942 |
+
"text/plain": [
|
943 |
+
"tensor([[1.0000, 0.8303, 0.2996, 0.3908, 0.2984, 0.3062, 0.3428, 0.3735],\n",
|
944 |
+
" [0.8303, 1.0000, 0.3453, 0.4187, 0.3044, 0.3462, 0.4387, 0.3961],\n",
|
945 |
+
" [0.2996, 0.3453, 1.0000, 0.6643, 0.4724, 0.4596, 0.3803, 0.3454],\n",
|
946 |
+
" [0.3908, 0.4187, 0.6643, 1.0000, 0.5169, 0.5196, 0.3744, 0.4003],\n",
|
947 |
+
" [0.2984, 0.3044, 0.4724, 0.5169, 1.0000, 0.7603, 0.3920, 0.3550],\n",
|
948 |
+
" [0.3062, 0.3462, 0.4596, 0.5196, 0.7603, 1.0000, 0.4333, 0.3427],\n",
|
949 |
+
" [0.3428, 0.4387, 0.3803, 0.3744, 0.3920, 0.4333, 1.0000, 0.6087],\n",
|
950 |
+
" [0.3735, 0.3961, 0.3454, 0.4003, 0.3550, 0.3427, 0.6087, 1.0000]])"
|
951 |
+
]
|
952 |
+
},
|
953 |
+
"execution_count": 13,
|
954 |
+
"metadata": {},
|
955 |
+
"output_type": "execute_result"
|
956 |
+
}
|
957 |
+
],
|
958 |
+
"source": [
|
959 |
+
"# Test the models - Original embeddings\n",
|
960 |
+
"english_embeds = encoder(english_sentences)[0].numpy()\n",
|
961 |
+
"print(english_embeds.shape)\n",
|
962 |
+
"util.dot_score(english_embeds, english_embeds)"
|
963 |
+
]
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"cell_type": "code",
|
967 |
+
"execution_count": 14,
|
968 |
+
"id": "34b44ef7",
|
969 |
+
"metadata": {},
|
970 |
+
"outputs": [],
|
971 |
+
"source": [
|
972 |
+
"folder = f'models/gtr-t5-{model_size_hf}'\n",
|
973 |
+
"t5.save_pretrained(folder)\n",
|
974 |
+
"tokenizer.save_pretrained(folder)\n",
|
975 |
+
"os.makedirs(os.path.join(folder, '2_Dense'), exist_ok=True)\n",
|
976 |
+
"\n",
|
977 |
+
"\n",
|
978 |
+
"dense = sentence_transformers.models.Dense(linear.in_features, linear.out_features, \n",
|
979 |
+
" bias=False, activation_function=torch.nn.Identity())\n",
|
980 |
+
"dense.linear = linear\n",
|
981 |
+
"dense.save(os.path.join(folder, '2_Dense'))\n"
|
982 |
+
]
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"cell_type": "markdown",
|
986 |
+
"id": "8f6e006b",
|
987 |
+
"metadata": {},
|
988 |
+
"source": [
|
989 |
+
"# FP16 experiment"
|
990 |
+
]
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"cell_type": "code",
|
994 |
+
"execution_count": null,
|
995 |
+
"id": "38b1b35e",
|
996 |
+
"metadata": {},
|
997 |
+
"outputs": [],
|
998 |
+
"source": [
|
999 |
+
"#FP16 experiment\n",
|
1000 |
+
"#t5 = T5EncoderModel.from_pretrained('models/gtr-t5-base')\n",
|
1001 |
+
"#t5.half()\n",
|
1002 |
+
"#t5.save_pretrained('models/gtr-t5-base-fp16')"
|
1003 |
+
]
|
1004 |
+
}
|
1005 |
+
],
|
1006 |
+
"metadata": {
|
1007 |
+
"kernelspec": {
|
1008 |
+
"display_name": "Python 3 (ipykernel)",
|
1009 |
+
"language": "python",
|
1010 |
+
"name": "python3"
|
1011 |
+
},
|
1012 |
+
"language_info": {
|
1013 |
+
"codemirror_mode": {
|
1014 |
+
"name": "ipython",
|
1015 |
+
"version": 3
|
1016 |
+
},
|
1017 |
+
"file_extension": ".py",
|
1018 |
+
"mimetype": "text/x-python",
|
1019 |
+
"name": "python",
|
1020 |
+
"nbconvert_exporter": "python",
|
1021 |
+
"pygments_lexer": "ipython3",
|
1022 |
+
"version": "3.8.8"
|
1023 |
+
}
|
1024 |
+
},
|
1025 |
+
"nbformat": 4,
|
1026 |
+
"nbformat_minor": 5
|
1027 |
+
}
|
convert_to_fp16.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from transformers import T5EncoderModel
|
3 |
+
|
4 |
+
in_path = sys.argv[1]
|
5 |
+
out_path = sys.argv[2]
|
6 |
+
|
7 |
+
model = T5EncoderModel.from_pretrained(in_path)
|
8 |
+
model.half()
|
9 |
+
model.save_pretrained(out_path)
|