Update README.md
Browse files
README.md
CHANGED
@@ -1,24 +1,16 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
|
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
- transformers
|
9 |
-
- transformers
|
10 |
-
- transformers
|
11 |
-
- transformers
|
12 |
-
- transformers
|
13 |
-
- transformers
|
14 |
-
- transformers
|
15 |
-
- transformers
|
16 |
-
- transformers
|
17 |
---
|
18 |
|
19 |
# sentence-transformers/msmarco-distilbert-base-tas-b
|
20 |
|
21 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
22 |
|
23 |
|
24 |
|
@@ -96,17 +88,4 @@ SentenceTransformer(
|
|
96 |
|
97 |
## Citing & Authors
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
102 |
-
```bibtex
|
103 |
-
@inproceedings{reimers-2019-sentence-bert,
|
104 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
105 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
106 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
107 |
-
month = "11",
|
108 |
-
year = "2019",
|
109 |
-
publisher = "Association for Computational Linguistics",
|
110 |
-
url = "http://arxiv.org/abs/1908.10084",
|
111 |
-
}
|
112 |
-
```
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
+
license: apache-2.0
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
# sentence-transformers/msmarco-distilbert-base-tas-b
|
12 |
|
13 |
+
This is a port of the [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
15 |
|
16 |
|
|
|
88 |
|
89 |
## Citing & Authors
|
90 |
|
91 |
+
Have a look at: [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|