--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert_finetune_own_data_model results: [] --- # distilbert_finetune_own_data_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0618 - Precision: 0.8889 - Recall: 0.8889 - F1: 0.8889 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 23 | 0.3117 | 1.0 | 0.6667 | 0.8 | 0.9091 | | No log | 2.0 | 46 | 0.1638 | 0.7778 | 0.7778 | 0.7778 | 0.9318 | | No log | 3.0 | 69 | 0.1322 | 0.875 | 0.7778 | 0.8235 | 0.9545 | | No log | 4.0 | 92 | 0.0582 | 0.8889 | 0.8889 | 0.8889 | 0.9773 | | No log | 5.0 | 115 | 0.1196 | 0.8889 | 0.8889 | 0.8889 | 0.9773 | | No log | 6.0 | 138 | 0.0607 | 0.8889 | 0.8889 | 0.8889 | 0.9773 | | No log | 7.0 | 161 | 0.0918 | 0.8889 | 0.8889 | 0.8889 | 0.9773 | | No log | 8.0 | 184 | 0.0512 | 0.8889 | 0.8889 | 0.8889 | 0.9773 | | No log | 9.0 | 207 | 0.0521 | 0.8889 | 0.8889 | 0.8889 | 0.9773 | | No log | 10.0 | 230 | 0.0618 | 0.8889 | 0.8889 | 0.8889 | 0.9773 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2