---
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4532
- loss:CoSENTLoss
widget:
- source_sentence: гантели грифы штанги гири
sentences:
- гири
- коммутатор poe web настраиваемый utp3526ts-psb
- игровой монитор lg xg2705
- source_sentence: vt vt9602
sentences:
- подгрифок для скрипки 1 4 wittner ultra 918141
- электросамокат white siberia nerpa pro 3600w 2023 elka зеленый
- компьютер pc itmultra 2 v 2
- source_sentence: фен dyson supersonic hd08 replika
sentences:
- стабилизатор smooth-x combo белый
- dyson supersonic hd08 replika
- ip-dal30ir0280p ver2
- source_sentence: aresa ar-4205
sentences:
- холодильник olto rf-140 c черный
- aresa ar-3905
- champion g200vk-1
- source_sentence: букеты шаров сеты для детей
sentences:
- букеты шаров сеты для него
- дрипка geekvape loop rda
- труба гладкая жесткая 16 мм 3 м
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9092748477762634
name: Pearson Cosine
- type: spearman_cosine
value: 0.8959000349666695
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9103703525656046
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8944672696951159
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9102936678180418
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8945285994969848
name: Spearman Euclidean
- type: pearson_dot
value: 0.8951660474126123
name: Pearson Dot
- type: spearman_dot
value: 0.8872903553527511
name: Spearman Dot
- type: pearson_max
value: 0.9103703525656046
name: Pearson Max
- type: spearman_max
value: 0.8959000349666695
name: Spearman Max
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl101/test_bge_10ep")
# Run inference
sentences = [
'букеты шаров сеты для детей',
'букеты шаров сеты для него',
'дрипка geekvape loop rda',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9093 |
| **spearman_cosine** | **0.8959** |
| pearson_manhattan | 0.9104 |
| spearman_manhattan | 0.8945 |
| pearson_euclidean | 0.9103 |
| spearman_euclidean | 0.8945 |
| pearson_dot | 0.8952 |
| spearman_dot | 0.8873 |
| pearson_max | 0.9104 |
| spearman_max | 0.8959 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,532 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
батут evo jump internal 12ft
| батут evo jump internal 12ft
| 1.0
|
| наручные часы orient casual
| наручные часы orient
| 1.0
|
| электрический духовой шкаф weissgauff eov 19 mw
| электрический духовой шкаф weissgauff eov 19 mx
| 0.4
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 504 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | потолочный светильник yeelight smart led ceiling light c2001s500
| yeelight smart led ceiling light c2001s500
| 1.0
|
| канцелярские принадлежности
| канцелярские принадлежности разные
| 0.4
|
| usb-магнитола acv avs-1718g
| автомагнитола acv avs-1718g
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `save_only_model`: True
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters