|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from io import BytesIO |
|
import torch |
|
import base64 |
|
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
model_id = "timbrooks/instruct-pix2pix" |
|
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, safety_checker=None) |
|
self.pipe.to(device) |
|
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj:`string`) |
|
parameters (:obj:) |
|
Return: |
|
A :obj:`string`:. Base64 encoded image string |
|
""" |
|
|
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
prompt = inputs['prompt'] |
|
|
|
images = self.pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images |
|
return images[0] |