sergioburdisso commited on
Commit
20d0716
1 Parent(s): 184bad6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -103
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: en
3
- license: apache-2.0
4
  library_name: sentence-transformers
5
  tags:
6
  - sentence-transformers
@@ -8,35 +8,23 @@ tags:
8
  - sentence-similarity
9
  - transformers
10
  datasets:
11
- - s2orc
12
- - flax-sentence-embeddings/stackexchange_xml
13
- - ms_marco
14
- - gooaq
15
- - yahoo_answers_topics
16
- - code_search_net
17
- - search_qa
18
- - eli5
19
- - snli
20
- - multi_nli
21
- - wikihow
22
- - natural_questions
23
- - trivia_qa
24
- - embedding-data/sentence-compression
25
- - embedding-data/flickr30k-captions
26
- - embedding-data/altlex
27
- - embedding-data/simple-wiki
28
- - embedding-data/QQP
29
- - embedding-data/SPECTER
30
- - embedding-data/PAQ_pairs
31
- - embedding-data/WikiAnswers
32
  pipeline_tag: sentence-similarity
 
 
33
  ---
34
 
35
 
36
- # all-MiniLM-L6-v2
37
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
 
 
 
 
38
 
39
  ## Usage (Sentence-Transformers)
 
40
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
41
 
42
  ```
@@ -44,22 +32,25 @@ pip install -U sentence-transformers
44
  ```
45
 
46
  Then you can use the model like this:
 
47
  ```python
48
  from sentence_transformers import SentenceTransformer
49
- sentences = ["This is an example sentence", "Each sentence is converted"]
50
 
51
- model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
52
  embeddings = model.encode(sentences)
53
  print(embeddings)
54
  ```
55
 
 
 
56
  ## Usage (HuggingFace Transformers)
57
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
58
 
59
  ```python
60
  from transformers import AutoTokenizer, AutoModel
61
  import torch
62
- import torch.nn.functional as F
63
 
64
  #Mean Pooling - Take attention mask into account for correct averaging
65
  def mean_pooling(model_output, attention_mask):
@@ -69,11 +60,11 @@ def mean_pooling(model_output, attention_mask):
69
 
70
 
71
  # Sentences we want sentence embeddings for
72
- sentences = ['This is an example sentence', 'Each sentence is converted']
73
 
74
  # Load model from HuggingFace Hub
75
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
76
- model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
77
 
78
  # Tokenize sentences
79
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -82,96 +73,84 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
82
  with torch.no_grad():
83
  model_output = model(**encoded_input)
84
 
85
- # Perform pooling
86
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
87
 
88
- # Normalize embeddings
89
- sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
90
-
91
  print("Sentence embeddings:")
92
  print(sentence_embeddings)
93
  ```
94
 
95
- ## Evaluation Results
96
-
97
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
98
-
99
- ------
100
-
101
- ## Background
102
 
103
- The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
104
- contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
105
- 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
106
 
107
- We developed this model during the
108
- [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
109
- organized by Hugging Face. We developed this model as part of the project:
110
- [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
111
-
112
- ## Intended uses
113
-
114
- Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
115
- the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
116
-
117
- By default, input text longer than 256 word pieces is truncated.
118
 
 
119
 
120
- ## Training procedure
121
 
122
- ### Pre-training
123
 
124
- We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
 
 
 
125
 
126
- ### Fine-tuning
127
 
128
- We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
129
- We then apply the cross entropy loss by comparing with true pairs.
130
 
131
- #### Hyper parameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
- We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
134
- We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
135
- a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
136
 
137
- #### Training data
 
 
 
 
 
 
138
 
139
- We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
140
- We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
 
142
 
143
- | Dataset | Paper | Number of training tuples |
144
- |--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
145
- | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
146
- | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
147
- | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
148
- | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
149
- | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
150
- | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
151
- | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
152
- | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
153
- | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
154
- | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
155
- | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
156
- | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
157
- | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
158
- | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
159
- | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
160
- | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
161
- | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
162
- | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
163
- | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
164
- | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
165
- | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
166
- | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
167
- | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
168
- | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
169
- | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
170
- | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
171
- | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
172
- | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
173
- | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
174
- | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
175
- | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
176
- | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
177
- | **Total** | | **1,170,060,424** |
 
1
  ---
2
  language: en
3
+ license: mit
4
  library_name: sentence-transformers
5
  tags:
6
  - sentence-transformers
 
8
  - sentence-similarity
9
  - transformers
10
  datasets:
11
+ - Salesforce/dialogstudio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  pipeline_tag: sentence-similarity
13
+ base_model:
14
+ - google-bert/bert-base-uncased
15
  ---
16
 
17
 
18
+ # Dialog2flow joint target (BERT-base)
19
+
20
+ This is the original **D2F$_{joint}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://publications.idiap.ch/attachments/papers/2024/Burdisso_EMNLP2024_2024.pdf) published in the EMNLP 2024 main conference.
21
+
22
+ Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
23
+
24
+ <!--- Describe your model here -->
25
 
26
  ## Usage (Sentence-Transformers)
27
+
28
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
29
 
30
  ```
 
32
  ```
33
 
34
  Then you can use the model like this:
35
+
36
  ```python
37
  from sentence_transformers import SentenceTransformer
38
+ sentences = ["your phone please", "okay may i have your telephone number please"]
39
 
40
+ model = SentenceTransformer('sergioburdisso/dialog2flow-joint-bert-base')
41
  embeddings = model.encode(sentences)
42
  print(embeddings)
43
  ```
44
 
45
+
46
+
47
  ## Usage (HuggingFace Transformers)
48
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
49
 
50
  ```python
51
  from transformers import AutoTokenizer, AutoModel
52
  import torch
53
+
54
 
55
  #Mean Pooling - Take attention mask into account for correct averaging
56
  def mean_pooling(model_output, attention_mask):
 
60
 
61
 
62
  # Sentences we want sentence embeddings for
63
+ sentences = ['your phone please', 'okay may i have your telephone number please']
64
 
65
  # Load model from HuggingFace Hub
66
+ tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
67
+ model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
68
 
69
  # Tokenize sentences
70
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
73
  with torch.no_grad():
74
  model_output = model(**encoded_input)
75
 
76
+ # Perform pooling. In this case, mean pooling.
77
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
78
 
 
 
 
79
  print("Sentence embeddings:")
80
  print(sentence_embeddings)
81
  ```
82
 
83
+ ## Training
84
+ The model was trained with the parameters:
 
 
 
 
 
85
 
86
+ **DataLoader**:
 
 
87
 
88
+ `torch.utils.data.dataloader.DataLoader` of length 363506 with parameters:
89
+ ```
90
+ {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
+ ```
 
 
 
 
 
 
 
92
 
93
+ **Loss**:
94
 
95
+ `spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
96
 
97
+ **DataLoader**:
98
 
99
+ `torch.utils.data.dataloader.DataLoader` of length 49478 with parameters:
100
+ ```
101
+ {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
102
+ ```
103
 
104
+ **Loss**:
105
 
106
+ `spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
 
107
 
108
+ Parameters of the fit()-Method:
109
+ ```
110
+ {
111
+ "epochs": 15,
112
+ "evaluation_steps": 164,
113
+ "evaluator": [
114
+ "spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
115
+ ],
116
+ "max_grad_norm": 1,
117
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
118
+ "optimizer_params": {
119
+ "lr": 3e-06
120
+ },
121
+ "scheduler": "WarmupLinear",
122
+ "warmup_steps": 100,
123
+ "weight_decay": 0.01
124
+ }
125
+ ```
126
 
 
 
 
127
 
128
+ ## Full Model Architecture
129
+ ```
130
+ SentenceTransformer(
131
+ (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
132
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
133
+ )
134
+ ```
135
 
136
+ ## Citing & Authors
137
+
138
+
139
+ ```bibtex
140
+ @inproceedings{burdisso-etal-2024-dialog2flow,
141
+ title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
142
+ author = "Burdisso, Sergio and
143
+ Madikeri, Srikanth and
144
+ Motlicek, Petr",
145
+ booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
146
+ month = nov,
147
+ year = "2024",
148
+ address = "Miami",
149
+ publisher = "Association for Computational Linguistics",
150
+ }
151
+ ```
152
 
153
+ ## License
154
 
155
+ Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
156
+ MIT License.