--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: my_model results: [] --- # my_model This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1746 - Accuracy: 0.9589 - F1: 0.8034 - Precision: 1.0 - Recall: 0.6714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 14 | 0.4759 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 28 | 0.3609 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 42 | 0.3394 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 4.0 | 56 | 0.3070 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 5.0 | 70 | 0.2768 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 6.0 | 84 | 0.2432 | 0.8893 | 0.2051 | 1.0 | 0.1143 | | No log | 7.0 | 98 | 0.2159 | 0.9071 | 0.4091 | 1.0 | 0.2571 | | No log | 8.0 | 112 | 0.1946 | 0.9429 | 0.7037 | 1.0 | 0.5429 | | No log | 9.0 | 126 | 0.1798 | 0.9554 | 0.7826 | 1.0 | 0.6429 | | No log | 10.0 | 140 | 0.1746 | 0.9589 | 0.8034 | 1.0 | 0.6714 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1