lunar_rover / config.json
sevdeawesome's picture
Upload PPO LunarLander-v2 trained agent
e999b69
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41c8fc9630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41c8fc96c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41c8fc9750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41c8fc97e0>", "_build": "<function ActorCriticPolicy._build at 0x7f41c8fc9870>", "forward": "<function ActorCriticPolicy.forward at 0x7f41c8fc9900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f41c8fc9990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41c8fc9a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f41c8fc9ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41c8fc9b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41c8fc9bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41c8fc9c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4167222d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685193318834165194, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJruobzz86Y/X2lFvh9brr78n8c8pXgfPQAAAAAAAAAAzUllPSdzbD+t4Gu8YrSevq23ij11jaA7AAAAAAAAAAAzibc84Q6RunDQUzpzIC02trsmu4aadbkAAIA/AACAPxqPUL2FC6y5qiJfOi3lXDUL9gO76I6CuQAAgD8AAIA/zdgtPW4KUD9TgMW6MjRnvhZ9M7w4uwY9AAAAAAAAAADmvHu9KThyuqKxjDuyQaw4Wl17OpL9KboAAIA/AACAPwC157z2cC+6bbXousnJZbbakhk73RgIOgAAgD8AAIA/s/xOvfawT7oi9xy5HnwbtHpGFTt8aTk4AACAPwAAgD8zdxq8CscEubeIOjp3FQ0za6g2OU6WX7kAAIA/AACAP82c1jos4VM/2+0XPZ7VXb7fOKw83exVPQAAAAAAAAAATQudPbjmubkdWHK6Xqd3tjlurzpqiI85AAAAAAAAgD9mZfK8w/USuiPG4TqPpyw25usXO+AwBboAAIA/AACAP+ZES73huoq6PdzZtu2gtbEmgB27eD39NQAAgD8AAIA/AHnRvI+eILoilC+7Kls6NyNvQLojBgk6AACAPwAAgD9mkkM89kRPusjN+zdltBAzdMF8uv0kFLcAAIA/AACAP00fFD2uJYi6V98puc8FHLQ4Q+05AqpFOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEDMifxtpEiMAWyUS62MAXSUR0CRm0EmICU5dX2UKGgGR0BhnXvBrN4aaAdN6ANoCEdAkZ5eeSSvDHV9lChoBkdAYtZQN0/4ZmgHTegDaAhHQJGgHS/j81p1fZQoaAZHQGc2tG/etS1oB03oA2gIR0CRo0YDDCP7dX2UKGgGR0BmdhvDP4VRaAdN6ANoCEdAka4K9wm3OXV9lChoBkdAPGS/47A+IWgHTS8BaAhHQJGva9RJmNB1fZQoaAZHQF3c4Cp3os9oB03oA2gIR0CRsBOXVsk6dX2UKGgGR0BmgRDTjNpuaAdN6ANoCEdAkbSgUUO/cnV9lChoBkdAYewht+CsfmgHTegDaAhHQJG8XPVurIZ1fZQoaAZHQGPzMHbAUL5oB03oA2gIR0CRwtRkVerudX2UKGgGR0BkWdC5VfeDaAdN6ANoCEdAkcMpPAO8TXV9lChoBkdAZfKkuYhMamgHTegDaAhHQJHDZtALRa51fZQoaAZHQEr24YJmdy1oB0vmaAhHQJHDtQZXMhZ1fZQoaAZHQGQZOhbnoxJoB03oA2gIR0CR3xyjYZl4dX2UKGgGR0Bnqx3C9AX3aAdN6ANoCEdAkd9mWD6Fd3V9lChoBkdAZntCWu5jIGgHTegDaAhHQJHgVXMhX8x1fZQoaAZHQGFnYA0bcXZoB03oA2gIR0CR4yDQZ4wAdX2UKGgGR0Bgxh5cC5mRaAdN6ANoCEdAkeWqKtPpIXV9lChoBkdAXbKYLLIPsmgHTegDaAhHQJHoQe+23KB1fZQoaAZHQGZa4IjW07doB03oA2gIR0CR7fWilBQfdX2UKGgGR0BizWglF+d9aAdN6ANoCEdAkfHDsdDIBHV9lChoBkdAZQh9Cu2ZzGgHTegDaAhHQJH/0M+eOGV1fZQoaAZHQGOZ1hCtzS1oB03oA2gIR0CSAfvl2eQNdX2UKGgGR0BeiP7vXsgMaAdN6ANoCEdAkgMJIlMRH3V9lChoBkdAXmA0qH4462gHTegDaAhHQJISecy31Bd1fZQoaAZHQGY0CQDFId5oB03oA2gIR0CSGAMTewcHdX2UKGgGR0Bhg2dbxEv1aAdN6ANoCEdAkhhBS5y2hXV9lChoBkdAY/sDV6NVBGgHTegDaAhHQJIYbbCaZx91fZQoaAZHQGH13rUsnRdoB03oA2gIR0CSGK6LwWnCdX2UKGgGR0Bn4pf4REncaAdN6ANoCEdAkiAsBIWgvnV9lChoBkdAYmHQrtmcv2gHTegDaAhHQJIwVCRfWtl1fZQoaAZHQF2KBCUornVoB03oA2gIR0CSMU6ZH/cWdX2UKGgGR0BlhRiLEUCaaAdN6ANoCEdAkjTfNmlImXV9lChoBkdAZpgwyqMm4WgHTegDaAhHQJI4YQyylep1fZQoaAZHQFvWi7TUiINoB03oA2gIR0CSPAd+G47SdX2UKGgGR0BjjOn0kGA1aAdN6ANoCEdAkkPjmW+oL3V9lChoBkdAYmmlLOAy22gHTegDaAhHQJJHKTjebd91fZQoaAZHQGb7637UG3ZoB03oA2gIR0CSUUs+V1OkdX2UKGgGR0BxlnXNC7btaAdNogJoCEdAklJX18LKFXV9lChoBkdAYp8qZtvXLGgHTegDaAhHQJJSnDk2gnN1fZQoaAZHQGV1bNr0rbxoB03oA2gIR0CSUyfW+XZ5dX2UKGgGR0BhQ5bt7a7FaAdN6ANoCEdAkl5eY6XBxnV9lChoBkdAZDdiExqO92gHTegDaAhHQJJjQ/PgNw11fZQoaAZHQGCeeTNdJJ5oB03oA2gIR0CSY3olUp/gdX2UKGgGR0BhPcJBw++uaAdN6ANoCEdAkmOj3/Pw/nV9lChoBkdAY8/ssxwhn2gHTegDaAhHQJJq+O+7Dl51fZQoaAZHQGfvLWy1NQFoB03oA2gIR0CSaznr6ciGdX2UKGgGR0Bm7JA2Q4jsaAdN6ANoCEdAkmwsEaESNHV9lChoBkdAZYuii7Ciy2gHTegDaAhHQJKC7wkPczt1fZQoaAZHQGLn5avA44poB03oA2gIR0CShX3Dej20dX2UKGgGR0BjCri4rjHXaAdN6ANoCEdAkof93wCr93V9lChoBkdAY0tbZezD42gHTegDaAhHQJKNUyrPt2N1fZQoaAZHQGEGE6Lfk3loB03oA2gIR0CSkPbdadMCdX2UKGgGR0BgSPz8P4EfaAdN6ANoCEdAkp0OAI6bOXV9lChoBkdAZc5WNFSbY2gHTegDaAhHQJKeTznRsuZ1fZQoaAZHQGFG9fb9If9oB03oA2gIR0CSnqEjxCpndX2UKGgGR0Blm2I/JNj9aAdN6ANoCEdAkp9PJV81GnV9lChoBkdAYoKnOSntOWgHTegDaAhHQJKv3SRbKRx1fZQoaAZHQGOnOpbUwztoB03oA2gIR0CStYnRLK3edX2UKGgGR0Bjo4CW/rSmaAdN6ANoCEdAkrXEQ5FPSHV9lChoBkdAZeDYdQwbl2gHTegDaAhHQJK18SZjQRh1fZQoaAZHQGWZk30f5k9oB03oA2gIR0CSvfHTqjagdX2UKGgGR0BhlFOM2m52aAdN6ANoCEdAkr453X7LuHV9lChoBkdAYqMbgCOmzmgHTegDaAhHQJK/JML4N7V1fZQoaAZHQGC4Il+mWMVoB03oA2gIR0CS0dtShrWRdX2UKGgGR0BhpCEOAiFCaAdN6ANoCEdAktRKScLBsXV9lChoBkdAY95sZYPoV2gHTegDaAhHQJLW67e2uxN1fZQoaAZHQHGAfy9VWCFoB026AWgIR0CS2IKJEYwZdX2UKGgGR0Bfd2joIOYqaAdN6ANoCEdAktzgXdj5K3V9lChoBkdAZHSfSx7iQ2gHTegDaAhHQJLhbuogmqp1fZQoaAZHQHIu7IDHOr1oB02GAWgIR0CS6zHPNVzZdX2UKGgGR0Blt+mpEQXiaAdN6ANoCEdAku5OIEbHZXV9lChoBkdAXg/t/nW8RWgHTegDaAhHQJLvb+Q2dd51fZQoaAZHQF85p35eqrBoB03oA2gIR0CS77ufEn9fdX2UKGgGR0BjusBU70WeaAdN6ANoCEdAkvBYhllK9XV9lChoBkdAZHPsXSBsh2gHTegDaAhHQJMCsZIg/1R1fZQoaAZHQF8hnDziCJ5oB03oA2gIR0CTAvzSkTHsdX2UKGgGR0Bjnn6dlNDdaAdN6ANoCEdAkwMq+WWyDHV9lChoBkdAYl25qdpZfWgHTegDaAhHQJMLq2a2F391fZQoaAZHQGaLzHKfWc1oB03oA2gIR0CTC/LZSNwSdX2UKGgGR0Bi7MophF3IaAdN6ANoCEdAkwznQY1pCnV9lChoBkdASxzhaTwDvGgHS9xoCEdAkw8/lZHNHHV9lChoBkdALjx5s0pEyGgHS/1oCEdAkyVLulXRxHV9lChoBkdAZvaJAt4A0mgHTegDaAhHQJMmJA8jiXJ1fZQoaAZHQGNTVschkiFoB03oA2gIR0CTKF9hZyMldX2UKGgGR0BnUU2cawUyaAdN6ANoCEdAkymxc3VConV9lChoBkdAZ85NxEORT2gHTegDaAhHQJMse2Yv38J1fZQoaAZHQGlB8kMTewdoB03oA2gIR0CTL0RsdkrgdX2UKGgGR0BkDN6cAimmaAdN6ANoCEdAkzYt3OfNA3V9lChoBkdAZWSa2nbZe2gHTegDaAhHQJM5BU0elsR1fZQoaAZHQGGyxYRujypoB03oA2gIR0CTOgv60pmVdX2UKGgGR0Bl4TqY7aIvaAdN6ANoCEdAkzpXARChOHV9lChoBkdAZxpDrqt5lmgHTegDaAhHQJM69D0Dlo11fZQoaAZHQHCOHHaN+9doB02yAmgIR0CTRBF+uvECdX2UKGgGR0BLJhoduHeraAdL12gIR0CTRSnvUjLTdX2UKGgGR0Bn6HX7Lt/naAdN6ANoCEdAk06QeA/cFnV9lChoBkdAYuu8q4H5amgHTegDaAhHQJNZLeGfwql1fZQoaAZHQGVUVnmJWNpoB03oA2gIR0CTWYAN5MURdX2UKGgGR0BveLHdXT3JaAdNswNoCEdAk1ozb8FY+3V9lChoBkdAQdxQDV6NVGgHS+ZoCEdAk15PVy3kP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}