File size: 2,331 Bytes
ed3dd0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: cc-by-nc-4.0
tags:
- merge
- mergekit
base_model:
- seyf1elislam/WestKunai-Hermes-7b
- seyf1elislam/WestKunai-Hermes-7b
- seyf1elislam/WestKunai-Hermes-7b
- seyf1elislam/WestKunai-Hermes-7b
- seyf1elislam/WestKunai-Hermes-7b
---
# WestKunai-Hermes-10.7b-test
Replicate the configuration utilized in the [froggeric/WestLake-10.7B-v2](https://huggingface.co/froggeric/WestLake-10.7B-v2/) model to extend the [WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b) model to 10.7b.
## Merge Details
### Models Merged
The following models were included in the merge:
* [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b)
* [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b)
* [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b)
* [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b)
* [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b)
## Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: seyf1elislam/WestKunai-Hermes-7b
layer_range: [0,9]
- sources:
- model: seyf1elislam/WestKunai-Hermes-7b
layer_range: [5,14]
- sources:
- model: seyf1elislam/WestKunai-Hermes-7b
layer_range: [10,19]
- sources:
- model: seyf1elislam/WestKunai-Hermes-7b
layer_range: [15,24]
- sources:
- model: seyf1elislam/WestKunai-Hermes-7b
layer_range: [20,32]
merge_method: passthrough
dtype: bfloat16
```
## Usage Example
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "seyf1elislam/WestKunai-Hermes-10.7b-test"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |