--- license: cc-by-nc-4.0 tags: - merge - mergekit base_model: - seyf1elislam/WestKunai-Hermes-7b - seyf1elislam/WestKunai-Hermes-7b - seyf1elislam/WestKunai-Hermes-7b - seyf1elislam/WestKunai-Hermes-7b - seyf1elislam/WestKunai-Hermes-7b --- # WestKunai-Hermes-10.7b-test Replicate the configuration utilized in the [froggeric/WestLake-10.7B-v2](https://huggingface.co/froggeric/WestLake-10.7B-v2/) model to extend the [WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b) model to 10.7b. ## Merge Details ### Models Merged The following models were included in the merge: * [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b) * [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b) * [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b) * [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b) * [seyf1elislam/WestKunai-Hermes-7b](https://huggingface.co/seyf1elislam/WestKunai-Hermes-7b) ## Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: seyf1elislam/WestKunai-Hermes-7b layer_range: [0,9] - sources: - model: seyf1elislam/WestKunai-Hermes-7b layer_range: [5,14] - sources: - model: seyf1elislam/WestKunai-Hermes-7b layer_range: [10,19] - sources: - model: seyf1elislam/WestKunai-Hermes-7b layer_range: [15,24] - sources: - model: seyf1elislam/WestKunai-Hermes-7b layer_range: [20,32] merge_method: passthrough dtype: bfloat16 ``` ## Usage Example ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "seyf1elislam/WestKunai-Hermes-10.7b-test" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```