File size: 6,529 Bytes
79943a9
48f24b9
79943a9
48f24b9
 
 
 
79943a9
 
 
 
 
 
 
 
48f24b9
79943a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f24b9
79943a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f24b9
 
 
 
 
 
 
 
79943a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import copy
import logging
import random
from collections import deque
from typing import List, NamedTuple, Optional, TypeVar

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.utils.tensorboard.writer import SummaryWriter

from rl_algo_impls.dqn.policy import DQNPolicy
from rl_algo_impls.shared.algorithm import Algorithm
from rl_algo_impls.shared.callbacks import Callback
from rl_algo_impls.shared.schedule import linear_schedule
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv, VecEnvObs


class Transition(NamedTuple):
    obs: np.ndarray
    action: np.ndarray
    reward: float
    done: bool
    next_obs: np.ndarray


class Batch(NamedTuple):
    obs: np.ndarray
    actions: np.ndarray
    rewards: np.ndarray
    dones: np.ndarray
    next_obs: np.ndarray


class ReplayBuffer:
    def __init__(self, num_envs: int, maxlen: int) -> None:
        self.num_envs = num_envs
        self.buffer = deque(maxlen=maxlen)

    def add(
        self,
        obs: VecEnvObs,
        action: np.ndarray,
        reward: np.ndarray,
        done: np.ndarray,
        next_obs: VecEnvObs,
    ) -> None:
        assert isinstance(obs, np.ndarray)
        assert isinstance(next_obs, np.ndarray)
        for i in range(self.num_envs):
            self.buffer.append(
                Transition(obs[i], action[i], reward[i], done[i], next_obs[i])
            )

    def sample(self, batch_size: int) -> Batch:
        ts = random.sample(self.buffer, batch_size)
        return Batch(
            obs=np.array([t.obs for t in ts]),
            actions=np.array([t.action for t in ts]),
            rewards=np.array([t.reward for t in ts]),
            dones=np.array([t.done for t in ts]),
            next_obs=np.array([t.next_obs for t in ts]),
        )

    def __len__(self) -> int:
        return len(self.buffer)


DQNSelf = TypeVar("DQNSelf", bound="DQN")


class DQN(Algorithm):
    def __init__(
        self,
        policy: DQNPolicy,
        env: VecEnv,
        device: torch.device,
        tb_writer: SummaryWriter,
        learning_rate: float = 1e-4,
        buffer_size: int = 1_000_000,
        learning_starts: int = 50_000,
        batch_size: int = 32,
        tau: float = 1.0,
        gamma: float = 0.99,
        train_freq: int = 4,
        gradient_steps: int = 1,
        target_update_interval: int = 10_000,
        exploration_fraction: float = 0.1,
        exploration_initial_eps: float = 1.0,
        exploration_final_eps: float = 0.05,
        max_grad_norm: float = 10.0,
    ) -> None:
        super().__init__(policy, env, device, tb_writer)
        self.policy = policy

        self.optimizer = Adam(self.policy.q_net.parameters(), lr=learning_rate)

        self.target_q_net = copy.deepcopy(self.policy.q_net).to(self.device)
        self.target_q_net.train(False)
        self.tau = tau
        self.target_update_interval = target_update_interval

        self.replay_buffer = ReplayBuffer(self.env.num_envs, buffer_size)
        self.batch_size = batch_size

        self.learning_starts = learning_starts
        self.train_freq = train_freq
        self.gradient_steps = gradient_steps

        self.gamma = gamma
        self.exploration_eps_schedule = linear_schedule(
            exploration_initial_eps,
            exploration_final_eps,
            end_fraction=exploration_fraction,
        )

        self.max_grad_norm = max_grad_norm

    def learn(
        self: DQNSelf, total_timesteps: int, callbacks: Optional[List[Callback]] = None
    ) -> DQNSelf:
        self.policy.train(True)
        obs = self.env.reset()
        obs = self._collect_rollout(self.learning_starts, obs, 1)
        learning_steps = total_timesteps - self.learning_starts
        timesteps_elapsed = 0
        steps_since_target_update = 0
        while timesteps_elapsed < learning_steps:
            progress = timesteps_elapsed / learning_steps
            eps = self.exploration_eps_schedule(progress)
            obs = self._collect_rollout(self.train_freq, obs, eps)
            rollout_steps = self.train_freq
            timesteps_elapsed += rollout_steps
            for _ in range(
                self.gradient_steps if self.gradient_steps > 0 else self.train_freq
            ):
                self.train()
            steps_since_target_update += rollout_steps
            if steps_since_target_update >= self.target_update_interval:
                self._update_target()
                steps_since_target_update = 0
            if callbacks:
                if not all(
                    c.on_step(timesteps_elapsed=rollout_steps) for c in callbacks
                ):
                    logging.info(
                        f"Callback terminated training at {timesteps_elapsed} timesteps"
                    )
                    break
        return self

    def train(self) -> None:
        if len(self.replay_buffer) < self.batch_size:
            return
        o, a, r, d, next_o = self.replay_buffer.sample(self.batch_size)
        o = torch.as_tensor(o, device=self.device)
        a = torch.as_tensor(a, device=self.device).unsqueeze(1)
        r = torch.as_tensor(r, dtype=torch.float32, device=self.device)
        d = torch.as_tensor(d, dtype=torch.long, device=self.device)
        next_o = torch.as_tensor(next_o, device=self.device)

        with torch.no_grad():
            target = r + (1 - d) * self.gamma * self.target_q_net(next_o).max(1).values
        current = self.policy.q_net(o).gather(dim=1, index=a).squeeze(1)
        loss = F.smooth_l1_loss(current, target)

        self.optimizer.zero_grad()
        loss.backward()
        if self.max_grad_norm:
            nn.utils.clip_grad_norm_(self.policy.q_net.parameters(), self.max_grad_norm)
        self.optimizer.step()

    def _collect_rollout(self, timesteps: int, obs: VecEnvObs, eps: float) -> VecEnvObs:
        for _ in range(0, timesteps, self.env.num_envs):
            action = self.policy.act(obs, eps, deterministic=False)
            next_obs, reward, done, _ = self.env.step(action)
            self.replay_buffer.add(obs, action, reward, done, next_obs)
            obs = next_obs
        return obs

    def _update_target(self) -> None:
        for target_param, param in zip(
            self.target_q_net.parameters(), self.policy.q_net.parameters()
        ):
            target_param.data.copy_(
                self.tau * param.data + (1 - self.tau) * target_param.data
            )