sgoodfriend's picture
DQN playing Acrobot-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/0511de345b17175b7cf1ea706c3e05981f11761c
8e63d2a
raw
history blame
5.4 kB
import dataclasses
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Sequence, TypeVar, Union
import numpy as np
from torch.utils.tensorboard.writer import SummaryWriter
@dataclass
class Episode:
score: float = 0
length: int = 0
info: Dict[str, Dict[str, Any]] = dataclasses.field(default_factory=dict)
StatisticSelf = TypeVar("StatisticSelf", bound="Statistic")
@dataclass
class Statistic:
values: np.ndarray
round_digits: int = 2
@property
def mean(self) -> float:
return np.mean(self.values).item()
@property
def std(self) -> float:
return np.std(self.values).item()
@property
def min(self) -> float:
return np.min(self.values).item()
@property
def max(self) -> float:
return np.max(self.values).item()
def sum(self) -> float:
return np.sum(self.values).item()
def __len__(self) -> int:
return len(self.values)
def _diff(self: StatisticSelf, o: StatisticSelf) -> float:
return (self.mean - self.std) - (o.mean - o.std)
def __gt__(self: StatisticSelf, o: StatisticSelf) -> bool:
return self._diff(o) > 0
def __ge__(self: StatisticSelf, o: StatisticSelf) -> bool:
return self._diff(o) >= 0
def __repr__(self) -> str:
mean = round(self.mean, self.round_digits)
std = round(self.std, self.round_digits)
if self.round_digits == 0:
mean = int(mean)
std = int(std)
return f"{mean} +/- {std}"
def to_dict(self) -> Dict[str, float]:
return {
"mean": self.mean,
"std": self.std,
"min": self.min,
"max": self.max,
}
EpisodesStatsSelf = TypeVar("EpisodesStatsSelf", bound="EpisodesStats")
class EpisodesStats:
episodes: Sequence[Episode]
simple: bool
score: Statistic
length: Statistic
additional_stats: Dict[str, Statistic]
def __init__(self, episodes: Sequence[Episode], simple: bool = False) -> None:
self.episodes = episodes
self.simple = simple
self.score = Statistic(np.array([e.score for e in episodes]))
self.length = Statistic(np.array([e.length for e in episodes]), round_digits=0)
additional_values = defaultdict(list)
for e in self.episodes:
if e.info:
for k, v in e.info.items():
if isinstance(v, dict):
for k2, v2 in v.items():
additional_values[f"{k}_{k2}"].append(v2)
else:
additional_values[k].append(v)
self.additional_stats = {
k: Statistic(np.array(values)) for k, values in additional_values.items()
}
def __gt__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool:
return self.score > o.score
def __ge__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool:
return self.score >= o.score
def __repr__(self) -> str:
return (
f"Score: {self.score} ({round(self.score.mean - self.score.std, 2)}) | "
f"Length: {self.length}"
)
def __len__(self) -> int:
return len(self.episodes)
def _asdict(self) -> dict:
return {
"n_episodes": len(self.episodes),
"score": self.score.to_dict(),
"length": self.length.to_dict(),
}
def write_to_tensorboard(
self, tb_writer: SummaryWriter, main_tag: str, global_step: Optional[int] = None
) -> None:
stats = {"mean": self.score.mean}
if not self.simple:
stats.update(
{
"min": self.score.min,
"max": self.score.max,
"result": self.score.mean - self.score.std,
"n_episodes": len(self.episodes),
"length": self.length.mean,
}
)
for k, addl_stats in self.additional_stats.items():
stats[k] = addl_stats.mean
for name, value in stats.items():
tb_writer.add_scalar(f"{main_tag}/{name}", value, global_step=global_step)
class EpisodeAccumulator:
def __init__(self, num_envs: int):
self._episodes = []
self.current_episodes = [Episode() for _ in range(num_envs)]
@property
def episodes(self) -> List[Episode]:
return self._episodes
def step(self, reward: np.ndarray, done: np.ndarray, info: List[Dict]) -> None:
for idx, current in enumerate(self.current_episodes):
current.score += reward[idx]
current.length += 1
if done[idx]:
self._episodes.append(current)
self.current_episodes[idx] = Episode()
self.on_done(idx, current, info[idx])
def __len__(self) -> int:
return len(self.episodes)
def on_done(self, ep_idx: int, episode: Episode, info: Dict) -> None:
pass
def stats(self) -> EpisodesStats:
return EpisodesStats(self.episodes)
def log_scalars(
tb_writer: SummaryWriter,
main_tag: str,
tag_scalar_dict: Dict[str, Union[int, float]],
global_step: int,
) -> None:
for tag, value in tag_scalar_dict.items():
tb_writer.add_scalar(f"{main_tag}/{tag}", value, global_step)