dqn-CartPole-v1 / dqn /policy.py
sgoodfriend's picture
DQN playing CartPole-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/1d4094fbcc9082de7f53f4348dd4c7c354152907
ff8c6a7
raw
history blame
1.18 kB
import numpy as np
import os
import torch
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs
from typing import Sequence, TypeVar
from dqn.q_net import QNetwork
from shared.policy.policy import Policy
DQNPolicySelf = TypeVar("DQNPolicySelf", bound="DQNPolicy")
class DQNPolicy(Policy):
def __init__(
self,
env: VecEnv,
hidden_sizes: Sequence[int] = [],
**kwargs,
) -> None:
super().__init__(env, **kwargs)
self.q_net = QNetwork(env.observation_space, env.action_space, hidden_sizes)
def act(
self, obs: VecEnvObs, eps: float = 0, deterministic: bool = True
) -> np.ndarray:
assert eps == 0 if deterministic else eps >= 0
if not deterministic and np.random.random() < eps:
return np.array(
[self.env.action_space.sample() for _ in range(self.env.num_envs)]
)
else:
with torch.no_grad():
obs_th = torch.as_tensor(np.array(obs))
if self.device:
obs_th = obs_th.to(self.device)
return self.q_net(obs_th).argmax(axis=1).cpu().numpy()