DQN playing CartPole-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
2a8bf2e
from abc import ABC, abstractmethod | |
from typing import Optional, Tuple, Type, Union | |
import gym | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from rl_algo_impls.shared.module.utils import layer_init | |
EncoderOutDim = Union[int, Tuple[int, ...]] | |
class CnnEncoder(nn.Module, ABC): | |
def __init__( | |
self, | |
obs_space: gym.Space, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
self.range_size = np.max(obs_space.high) - np.min(obs_space.low) # type: ignore | |
def preprocess(self, obs: torch.Tensor) -> torch.Tensor: | |
if len(obs.shape) == 3: | |
obs = obs.unsqueeze(0) | |
return obs.float() / self.range_size | |
def forward(self, obs: torch.Tensor) -> torch.Tensor: | |
return self.preprocess(obs) | |
def out_dim(self) -> EncoderOutDim: | |
... | |
class FlattenedCnnEncoder(CnnEncoder): | |
def __init__( | |
self, | |
obs_space: gym.Space, | |
activation: Type[nn.Module], | |
linear_init_layers_orthogonal: bool, | |
cnn_flatten_dim: int, | |
cnn: nn.Module, | |
**kwargs, | |
) -> None: | |
super().__init__(obs_space, **kwargs) | |
self.cnn = cnn | |
self.flattened_dim = cnn_flatten_dim | |
with torch.no_grad(): | |
cnn_out = torch.flatten( | |
cnn(self.preprocess(torch.as_tensor(obs_space.sample()))), start_dim=1 | |
) | |
self.fc = nn.Sequential( | |
nn.Flatten(), | |
layer_init( | |
nn.Linear(cnn_out.shape[1], cnn_flatten_dim), | |
linear_init_layers_orthogonal, | |
), | |
activation(), | |
) | |
def forward(self, obs: torch.Tensor) -> torch.Tensor: | |
x = super().forward(obs) | |
x = self.cnn(x) | |
x = self.fc(x) | |
return x | |
def out_dim(self) -> EncoderOutDim: | |
return self.flattened_dim | |