File size: 4,690 Bytes
33f6fc2 d643f40 33f6fc2 d643f40 33f6fc2 d643f40 33f6fc2 d643f40 33f6fc2 d643f40 33f6fc2 d643f40 33f6fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from typing import Tuple, TypeVar
import gym
import numpy as np
from numpy.typing import NDArray
from rl_algo_impls.wrappers.vectorable_wrapper import (
VecotarableWrapper,
single_observation_space,
)
RunningMeanStdSelf = TypeVar("RunningMeanStdSelf", bound="RunningMeanStd")
class RunningMeanStd:
def __init__(self, episilon: float = 1e-4, shape: Tuple[int, ...] = ()) -> None:
self.mean = np.zeros(shape, np.float64)
self.var = np.ones(shape, np.float64)
self.count = episilon
def update(self, x: NDArray) -> None:
batch_mean = np.mean(x, axis=0)
batch_var = np.var(x, axis=0)
batch_count = x.shape[0]
delta = batch_mean - self.mean
total_count = self.count + batch_count
self.mean += delta * batch_count / total_count
m_a = self.var * self.count
m_b = batch_var * batch_count
M2 = m_a + m_b + np.square(delta) * self.count * batch_count / total_count
self.var = M2 / total_count
self.count = total_count
def save(self, path: str) -> None:
np.savez_compressed(
path,
mean=self.mean,
var=self.var,
count=self.count,
)
def load(self, path: str) -> None:
data = np.load(path)
self.mean = data["mean"]
self.var = data["var"]
self.count = data["count"]
def load_from(self: RunningMeanStdSelf, existing: RunningMeanStdSelf) -> None:
self.mean = np.copy(existing.mean)
self.var = np.copy(existing.var)
self.count = np.copy(existing.count)
NormalizeObservationSelf = TypeVar(
"NormalizeObservationSelf", bound="NormalizeObservation"
)
class NormalizeObservation(VecotarableWrapper):
def __init__(
self,
env: gym.Env,
training: bool = True,
epsilon: float = 1e-8,
clip: float = 10.0,
) -> None:
super().__init__(env)
self.rms = RunningMeanStd(shape=single_observation_space(env).shape)
self.training = training
self.epsilon = epsilon
self.clip = clip
def step(self, action):
obs, reward, done, info = self.env.step(action)
return self.normalize(obs), reward, done, info
def reset(self, **kwargs):
obs = self.env.reset(**kwargs)
return self.normalize(obs)
def normalize(self, obs: NDArray) -> NDArray:
obs_array = np.array([obs]) if not self.is_vector_env else obs
if self.training:
self.rms.update(obs_array)
normalized = np.clip(
(obs_array - self.rms.mean) / np.sqrt(self.rms.var + self.epsilon),
-self.clip,
self.clip,
)
return normalized[0] if not self.is_vector_env else normalized
def save(self, path: str) -> None:
self.rms.save(path)
def load(self, path: str) -> None:
self.rms.load(path)
def load_from(
self: NormalizeObservationSelf, existing: NormalizeObservationSelf
) -> None:
self.rms.load_from(existing.rms)
NormalizeRewardSelf = TypeVar("NormalizeRewardSelf", bound="NormalizeReward")
class NormalizeReward(VecotarableWrapper):
def __init__(
self,
env: gym.Env,
training: bool = True,
gamma: float = 0.99,
epsilon: float = 1e-8,
clip: float = 10.0,
) -> None:
super().__init__(env)
self.rms = RunningMeanStd(shape=())
self.training = training
self.gamma = gamma
self.epsilon = epsilon
self.clip = clip
self.returns = np.zeros(self.num_envs)
def step(self, action):
obs, reward, done, info = self.env.step(action)
if not self.is_vector_env:
reward = np.array([reward])
reward = self.normalize(reward)
if not self.is_vector_env:
reward = reward[0]
dones = done if self.is_vector_env else np.array([done])
self.returns[dones] = 0
return obs, reward, done, info
def reset(self, **kwargs):
self.returns = np.zeros(self.num_envs)
return self.env.reset(**kwargs)
def normalize(self, rewards):
if self.training:
self.returns = self.returns * self.gamma + rewards
self.rms.update(self.returns)
return np.clip(
rewards / np.sqrt(self.rms.var + self.epsilon), -self.clip, self.clip
)
def save(self, path: str) -> None:
self.rms.save(path)
def load(self, path: str) -> None:
self.rms.load(path)
def load_from(self: NormalizeRewardSelf, existing: NormalizeRewardSelf) -> None:
self.rms.load_from(existing.rms)
|