File size: 14,977 Bytes
b9e43f7 7bfbe05 9744ddc b9e43f7 9744ddc b9e43f7 7bfbe05 b9e43f7 9744ddc 7bfbe05 9744ddc 7bfbe05 9744ddc 7bfbe05 b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 9744ddc b9e43f7 7bfbe05 b9e43f7 9744ddc b9e43f7 9744ddc b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 9744ddc b9e43f7 9744ddc b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 9744ddc 7bfbe05 b9e43f7 9744ddc b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 7bfbe05 b9e43f7 9744ddc b9e43f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import logging
from dataclasses import asdict, dataclass
from time import perf_counter
from typing import List, NamedTuple, Optional, TypeVar
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.tensorboard.writer import SummaryWriter
from rl_algo_impls.shared.algorithm import Algorithm
from rl_algo_impls.shared.callbacks import Callback
from rl_algo_impls.shared.gae import compute_advantages
from rl_algo_impls.shared.policy.actor_critic import ActorCritic
from rl_algo_impls.shared.schedule import (
constant_schedule,
linear_schedule,
schedule,
update_learning_rate,
)
from rl_algo_impls.shared.stats import log_scalars
from rl_algo_impls.wrappers.vectorable_wrapper import (
VecEnv,
single_action_space,
single_observation_space,
)
class TrainStepStats(NamedTuple):
loss: float
pi_loss: float
v_loss: float
entropy_loss: float
approx_kl: float
clipped_frac: float
val_clipped_frac: float
@dataclass
class TrainStats:
loss: float
pi_loss: float
v_loss: float
entropy_loss: float
approx_kl: float
clipped_frac: float
val_clipped_frac: float
explained_var: float
def __init__(self, step_stats: List[TrainStepStats], explained_var: float) -> None:
self.loss = np.mean([s.loss for s in step_stats]).item()
self.pi_loss = np.mean([s.pi_loss for s in step_stats]).item()
self.v_loss = np.mean([s.v_loss for s in step_stats]).item()
self.entropy_loss = np.mean([s.entropy_loss for s in step_stats]).item()
self.approx_kl = np.mean([s.approx_kl for s in step_stats]).item()
self.clipped_frac = np.mean([s.clipped_frac for s in step_stats]).item()
self.val_clipped_frac = np.mean([s.val_clipped_frac for s in step_stats]).item()
self.explained_var = explained_var
def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None:
for name, value in asdict(self).items():
tb_writer.add_scalar(f"losses/{name}", value, global_step=global_step)
def __repr__(self) -> str:
return " | ".join(
[
f"Loss: {round(self.loss, 2)}",
f"Pi L: {round(self.pi_loss, 2)}",
f"V L: {round(self.v_loss, 2)}",
f"E L: {round(self.entropy_loss, 2)}",
f"Apx KL Div: {round(self.approx_kl, 2)}",
f"Clip Frac: {round(self.clipped_frac, 2)}",
f"Val Clip Frac: {round(self.val_clipped_frac, 2)}",
]
)
PPOSelf = TypeVar("PPOSelf", bound="PPO")
class PPO(Algorithm):
def __init__(
self,
policy: ActorCritic,
env: VecEnv,
device: torch.device,
tb_writer: SummaryWriter,
learning_rate: float = 3e-4,
learning_rate_decay: str = "none",
n_steps: int = 2048,
batch_size: int = 64,
n_epochs: int = 10,
gamma: float = 0.99,
gae_lambda: float = 0.95,
clip_range: float = 0.2,
clip_range_decay: str = "none",
clip_range_vf: Optional[float] = None,
clip_range_vf_decay: str = "none",
normalize_advantage: bool = True,
ent_coef: float = 0.0,
ent_coef_decay: str = "none",
vf_coef: float = 0.5,
ppo2_vf_coef_halving: bool = False,
max_grad_norm: float = 0.5,
sde_sample_freq: int = -1,
update_advantage_between_epochs: bool = True,
update_returns_between_epochs: bool = False,
gamma_end: Optional[float] = None,
) -> None:
super().__init__(policy, env, device, tb_writer)
self.policy = policy
self.get_action_mask = getattr(env, "get_action_mask", None)
self.gamma_schedule = (
linear_schedule(gamma, gamma_end)
if gamma_end is not None
else constant_schedule(gamma)
)
self.gae_lambda = gae_lambda
self.optimizer = Adam(self.policy.parameters(), lr=learning_rate, eps=1e-7)
self.lr_schedule = schedule(learning_rate_decay, learning_rate)
self.max_grad_norm = max_grad_norm
self.clip_range_schedule = schedule(clip_range_decay, clip_range)
self.clip_range_vf_schedule = None
if clip_range_vf:
self.clip_range_vf_schedule = schedule(clip_range_vf_decay, clip_range_vf)
if normalize_advantage:
assert (
env.num_envs * n_steps > 1 and batch_size > 1
), f"Each minibatch must be larger than 1 to support normalization"
self.normalize_advantage = normalize_advantage
self.ent_coef_schedule = schedule(ent_coef_decay, ent_coef)
self.vf_coef = vf_coef
self.ppo2_vf_coef_halving = ppo2_vf_coef_halving
self.n_steps = n_steps
self.batch_size = batch_size
self.n_epochs = n_epochs
self.sde_sample_freq = sde_sample_freq
self.update_advantage_between_epochs = update_advantage_between_epochs
self.update_returns_between_epochs = update_returns_between_epochs
def learn(
self: PPOSelf,
train_timesteps: int,
callbacks: Optional[List[Callback]] = None,
total_timesteps: Optional[int] = None,
start_timesteps: int = 0,
) -> PPOSelf:
if total_timesteps is None:
total_timesteps = train_timesteps
assert start_timesteps + train_timesteps <= total_timesteps
epoch_dim = (self.n_steps, self.env.num_envs)
step_dim = (self.env.num_envs,)
obs_space = single_observation_space(self.env)
act_space = single_action_space(self.env)
act_shape = self.policy.action_shape
next_obs = self.env.reset()
next_action_masks = self.get_action_mask() if self.get_action_mask else None
next_episode_starts = np.full(step_dim, True, dtype=np.bool_)
obs = np.zeros(epoch_dim + obs_space.shape, dtype=obs_space.dtype) # type: ignore
actions = np.zeros(epoch_dim + act_shape, dtype=act_space.dtype) # type: ignore
rewards = np.zeros(epoch_dim, dtype=np.float32)
episode_starts = np.zeros(epoch_dim, dtype=np.bool_)
values = np.zeros(epoch_dim, dtype=np.float32)
logprobs = np.zeros(epoch_dim, dtype=np.float32)
action_masks = (
np.zeros(
(self.n_steps,) + next_action_masks.shape, dtype=next_action_masks.dtype
)
if next_action_masks is not None
else None
)
timesteps_elapsed = start_timesteps
while timesteps_elapsed < start_timesteps + train_timesteps:
start_time = perf_counter()
progress = timesteps_elapsed / total_timesteps
ent_coef = self.ent_coef_schedule(progress)
learning_rate = self.lr_schedule(progress)
update_learning_rate(self.optimizer, learning_rate)
pi_clip = self.clip_range_schedule(progress)
gamma = self.gamma_schedule(progress)
chart_scalars = {
"learning_rate": self.optimizer.param_groups[0]["lr"],
"ent_coef": ent_coef,
"pi_clip": pi_clip,
"gamma": gamma,
}
if self.clip_range_vf_schedule:
v_clip = self.clip_range_vf_schedule(progress)
chart_scalars["v_clip"] = v_clip
else:
v_clip = None
log_scalars(self.tb_writer, "charts", chart_scalars, timesteps_elapsed)
self.policy.eval()
self.policy.reset_noise()
for s in range(self.n_steps):
timesteps_elapsed += self.env.num_envs
if self.sde_sample_freq > 0 and s > 0 and s % self.sde_sample_freq == 0:
self.policy.reset_noise()
obs[s] = next_obs
episode_starts[s] = next_episode_starts
if action_masks is not None:
action_masks[s] = next_action_masks
(
actions[s],
values[s],
logprobs[s],
clamped_action,
) = self.policy.step(next_obs, action_masks=next_action_masks)
next_obs, rewards[s], next_episode_starts, _ = self.env.step(
clamped_action
)
next_action_masks = (
self.get_action_mask() if self.get_action_mask else None
)
self.policy.train()
b_obs = torch.tensor(obs.reshape((-1,) + obs_space.shape)).to(self.device) # type: ignore
b_actions = torch.tensor(actions.reshape((-1,) + act_shape)).to( # type: ignore
self.device
)
b_logprobs = torch.tensor(logprobs.reshape(-1)).to(self.device)
b_action_masks = (
torch.tensor(action_masks.reshape((-1,) + next_action_masks.shape[1:])).to( # type: ignore
self.device
)
if action_masks is not None
else None
)
y_pred = values.reshape(-1)
b_values = torch.tensor(y_pred).to(self.device)
step_stats = []
# Define variables that will definitely be set through the first epoch
advantages: np.ndarray = None # type: ignore
b_advantages: torch.Tensor = None # type: ignore
y_true: np.ndarray = None # type: ignore
b_returns: torch.Tensor = None # type: ignore
for e in range(self.n_epochs):
if e == 0 or self.update_advantage_between_epochs:
advantages = compute_advantages(
rewards,
values,
episode_starts,
next_episode_starts,
next_obs,
self.policy,
gamma,
self.gae_lambda,
)
b_advantages = torch.tensor(advantages.reshape(-1)).to(self.device)
if e == 0 or self.update_returns_between_epochs:
returns = advantages + values
y_true = returns.reshape(-1)
b_returns = torch.tensor(y_true).to(self.device)
b_idxs = torch.randperm(len(b_obs))
# Only record last epoch's stats
step_stats.clear()
for i in range(0, len(b_obs), self.batch_size):
self.policy.reset_noise(self.batch_size)
mb_idxs = b_idxs[i : i + self.batch_size]
mb_obs = b_obs[mb_idxs]
mb_actions = b_actions[mb_idxs]
mb_values = b_values[mb_idxs]
mb_logprobs = b_logprobs[mb_idxs]
mb_action_masks = (
b_action_masks[mb_idxs] if b_action_masks is not None else None
)
mb_adv = b_advantages[mb_idxs]
if self.normalize_advantage:
mb_adv = (mb_adv - mb_adv.mean()) / (mb_adv.std() + 1e-8)
mb_returns = b_returns[mb_idxs]
new_logprobs, entropy, new_values = self.policy(
mb_obs, mb_actions, action_masks=mb_action_masks
)
logratio = new_logprobs - mb_logprobs
ratio = torch.exp(logratio)
clipped_ratio = torch.clamp(ratio, min=1 - pi_clip, max=1 + pi_clip)
pi_loss = torch.max(-ratio * mb_adv, -clipped_ratio * mb_adv).mean()
v_loss_unclipped = (new_values - mb_returns) ** 2
if v_clip:
v_loss_clipped = (
mb_values
+ torch.clamp(new_values - mb_values, -v_clip, v_clip)
- mb_returns
) ** 2
v_loss = torch.max(v_loss_unclipped, v_loss_clipped).mean()
else:
v_loss = v_loss_unclipped.mean()
if self.ppo2_vf_coef_halving:
v_loss *= 0.5
entropy_loss = -entropy.mean()
loss = pi_loss + ent_coef * entropy_loss + self.vf_coef * v_loss
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(
self.policy.parameters(), self.max_grad_norm
)
self.optimizer.step()
with torch.no_grad():
approx_kl = ((ratio - 1) - logratio).mean().cpu().numpy().item()
clipped_frac = (
((ratio - 1).abs() > pi_clip)
.float()
.mean()
.cpu()
.numpy()
.item()
)
val_clipped_frac = (
((new_values - mb_values).abs() > v_clip)
.float()
.mean()
.cpu()
.numpy()
.item()
if v_clip
else 0
)
step_stats.append(
TrainStepStats(
loss.item(),
pi_loss.item(),
v_loss.item(),
entropy_loss.item(),
approx_kl,
clipped_frac,
val_clipped_frac,
)
)
var_y = np.var(y_true).item()
explained_var = (
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred).item() / var_y
)
TrainStats(step_stats, explained_var).write_to_tensorboard(
self.tb_writer, timesteps_elapsed
)
end_time = perf_counter()
rollout_steps = self.n_steps * self.env.num_envs
self.tb_writer.add_scalar(
"train/steps_per_second",
rollout_steps / (end_time - start_time),
timesteps_elapsed,
)
if callbacks:
if not all(
c.on_step(timesteps_elapsed=rollout_steps) for c in callbacks
):
logging.info(
f"Callback terminated training at {timesteps_elapsed} timesteps"
)
break
return self
|