File size: 5,999 Bytes
946448b
 
c2ccc18
946448b
 
 
c2ccc18
 
 
 
 
 
 
946448b
c2ccc18
 
 
 
 
 
 
 
 
1cde088
c2ccc18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cde088
 
 
 
 
 
 
 
 
 
c2ccc18
1cde088
c2ccc18
 
 
 
 
 
 
 
 
 
 
1cde088
 
 
 
 
c2ccc18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cde088
 
 
 
 
 
c2ccc18
 
1cde088
 
 
c2ccc18
946448b
 
 
 
 
 
 
 
 
 
 
 
1cde088
c2ccc18
 
 
 
 
 
 
 
1cde088
 
 
 
 
 
c2ccc18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cde088
c2ccc18
 
 
 
946448b
 
c2ccc18
 
 
 
 
 
 
 
 
 
 
 
 
946448b
c2ccc18
 
 
 
 
 
946448b
c2ccc18
 
 
 
946448b
c2ccc18
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import dataclasses
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Sequence, TypeVar, Union

import numpy as np
from torch.utils.tensorboard.writer import SummaryWriter


@dataclass
class Episode:
    score: float = 0
    length: int = 0
    info: Dict[str, Dict[str, Any]] = dataclasses.field(default_factory=dict)


StatisticSelf = TypeVar("StatisticSelf", bound="Statistic")


@dataclass
class Statistic:
    values: np.ndarray
    round_digits: int = 2
    score_function: str = "mean-std"

    @property
    def mean(self) -> float:
        return np.mean(self.values).item()

    @property
    def std(self) -> float:
        return np.std(self.values).item()

    @property
    def min(self) -> float:
        return np.min(self.values).item()

    @property
    def max(self) -> float:
        return np.max(self.values).item()

    def sum(self) -> float:
        return np.sum(self.values).item()

    def __len__(self) -> int:
        return len(self.values)

    def score(self) -> float:
        if self.score_function == "mean-std":
            return self.mean - self.std
        elif self.score_function == "mean":
            return self.mean
        else:
            raise NotImplemented(
                f"Only mean-std and mean score_functions supported ({self.score_function})"
            )

    def _diff(self: StatisticSelf, o: StatisticSelf) -> float:
        return self.score() - o.score()

    def __gt__(self: StatisticSelf, o: StatisticSelf) -> bool:
        return self._diff(o) > 0

    def __ge__(self: StatisticSelf, o: StatisticSelf) -> bool:
        return self._diff(o) >= 0

    def __repr__(self) -> str:
        mean = round(self.mean, self.round_digits)
        if self.round_digits == 0:
            mean = int(mean)
        if self.score_function == "mean":
            return f"{mean}"

        std = round(self.std, self.round_digits)
        if self.round_digits == 0:
            std = int(std)
        return f"{mean} +/- {std}"

    def to_dict(self) -> Dict[str, float]:
        return {
            "mean": self.mean,
            "std": self.std,
            "min": self.min,
            "max": self.max,
        }


EpisodesStatsSelf = TypeVar("EpisodesStatsSelf", bound="EpisodesStats")


class EpisodesStats:
    def __init__(
        self,
        episodes: Sequence[Episode],
        simple: bool = False,
        score_function: str = "mean-std",
    ) -> None:
        self.episodes = episodes
        self.simple = simple
        self.score = Statistic(
            np.array([e.score for e in episodes]), score_function=score_function
        )
        self.length = Statistic(np.array([e.length for e in episodes]), round_digits=0)
        additional_values = defaultdict(list)
        for e in self.episodes:
            if e.info:
                for k, v in e.info.items():
                    if isinstance(v, dict):
                        for k2, v2 in v.items():
                            additional_values[f"{k}_{k2}"].append(v2)
                    else:
                        additional_values[k].append(v)
        self.additional_stats = {
            k: Statistic(np.array(values)) for k, values in additional_values.items()
        }
        self.score_function = score_function

    def __gt__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool:
        return self.score > o.score

    def __ge__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool:
        return self.score >= o.score

    def __repr__(self) -> str:
        mean = self.score.mean
        score = self.score.score()
        if mean != score:
            return f"Score: {self.score} ({round(score)}) | Length: {self.length}"
        else:
            return f"Score: {self.score} | Length: {self.length}"

    def __len__(self) -> int:
        return len(self.episodes)

    def _asdict(self) -> dict:
        return {
            "n_episodes": len(self.episodes),
            "score": self.score.to_dict(),
            "length": self.length.to_dict(),
        }

    def write_to_tensorboard(
        self, tb_writer: SummaryWriter, main_tag: str, global_step: Optional[int] = None
    ) -> None:
        stats = {"mean": self.score.mean}
        if not self.simple:
            stats.update(
                {
                    "min": self.score.min,
                    "max": self.score.max,
                    "result": self.score.score(),
                    "n_episodes": len(self.episodes),
                    "length": self.length.mean,
                }
            )
            for k, addl_stats in self.additional_stats.items():
                stats[k] = addl_stats.mean
        for name, value in stats.items():
            tb_writer.add_scalar(f"{main_tag}/{name}", value, global_step=global_step)


class EpisodeAccumulator:
    def __init__(self, num_envs: int):
        self._episodes = []
        self.current_episodes = [Episode() for _ in range(num_envs)]

    @property
    def episodes(self) -> List[Episode]:
        return self._episodes

    def step(self, reward: np.ndarray, done: np.ndarray, info: List[Dict]) -> None:
        for idx, current in enumerate(self.current_episodes):
            current.score += reward[idx]
            current.length += 1
            if done[idx]:
                self._episodes.append(current)
                self.current_episodes[idx] = Episode()
                self.on_done(idx, current, info[idx])

    def __len__(self) -> int:
        return len(self.episodes)

    def on_done(self, ep_idx: int, episode: Episode, info: Dict) -> None:
        pass

    def stats(self) -> EpisodesStats:
        return EpisodesStats(self.episodes)


def log_scalars(
    tb_writer: SummaryWriter,
    main_tag: str,
    tag_scalar_dict: Dict[str, Union[int, float]],
    global_step: int,
) -> None:
    for tag, value in tag_scalar_dict.items():
        tb_writer.add_scalar(f"{main_tag}/{tag}", value, global_step)