sgoodfriend's picture
PPO playing QbertNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
a861765
from typing import Optional, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
from numpy.typing import NDArray
from rl_algo_impls.shared.actor import Actor, PiForward, pi_forward
from rl_algo_impls.shared.actor.gridnet import GridnetDistribution
from rl_algo_impls.shared.encoder import EncoderOutDim
from rl_algo_impls.shared.module.utils import layer_init
class Transpose(nn.Module):
def __init__(self, permutation: Tuple[int, ...]) -> None:
super().__init__()
self.permutation = permutation
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x.permute(self.permutation)
class GridnetDecoder(Actor):
def __init__(
self,
map_size: int,
action_vec: NDArray[np.int64],
in_dim: EncoderOutDim,
activation: Type[nn.Module] = nn.ReLU,
init_layers_orthogonal: bool = True,
) -> None:
super().__init__()
self.map_size = map_size
self.action_vec = action_vec
assert isinstance(in_dim, tuple)
self.deconv = nn.Sequential(
layer_init(
nn.ConvTranspose2d(
in_dim[0], 128, 3, stride=2, padding=1, output_padding=1
),
init_layers_orthogonal=init_layers_orthogonal,
),
activation(),
layer_init(
nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1),
init_layers_orthogonal=init_layers_orthogonal,
),
activation(),
layer_init(
nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1),
init_layers_orthogonal=init_layers_orthogonal,
),
activation(),
layer_init(
nn.ConvTranspose2d(
32, action_vec.sum(), 3, stride=2, padding=1, output_padding=1
),
init_layers_orthogonal=init_layers_orthogonal,
std=0.01,
),
Transpose((0, 2, 3, 1)),
)
def forward(
self,
obs: torch.Tensor,
actions: Optional[torch.Tensor] = None,
action_masks: Optional[torch.Tensor] = None,
) -> PiForward:
assert (
action_masks is not None
), f"No mask case unhandled in {self.__class__.__name__}"
logits = self.deconv(obs)
pi = GridnetDistribution(self.map_size, self.action_vec, logits, action_masks)
return pi_forward(pi, actions)
@property
def action_shape(self) -> Tuple[int, ...]:
return (self.map_size, len(self.action_vec))