vpg-CarRacing-v0 / rl_algo_impls /runner /selfplay_evaluate.py
sgoodfriend's picture
VPG playing CarRacing-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
fc9195a
raw
history blame
4.44 kB
import copy
import dataclasses
import os
import shutil
from dataclasses import dataclass
from typing import List, NamedTuple, Optional
import numpy as np
import wandb
from rl_algo_impls.runner.config import Config, EnvHyperparams, Hyperparams, RunArgs
from rl_algo_impls.runner.evaluate import Evaluation
from rl_algo_impls.runner.running_utils import (
get_device,
load_hyperparams,
make_policy,
set_seeds,
)
from rl_algo_impls.shared.callbacks.eval_callback import evaluate
from rl_algo_impls.shared.vec_env import make_eval_env
from rl_algo_impls.wrappers.vec_episode_recorder import VecEpisodeRecorder
@dataclass
class SelfplayEvalArgs(RunArgs):
# Either wandb_run_paths or model_file_paths must have 2 elements in it.
wandb_run_paths: List[str] = dataclasses.field(default_factory=list)
model_file_paths: List[str] = dataclasses.field(default_factory=list)
render: bool = False
best: bool = True
n_envs: int = 1
n_episodes: int = 1
deterministic_eval: Optional[bool] = None
no_print_returns: bool = False
video_path: Optional[str] = None
def selfplay_evaluate(args: SelfplayEvalArgs, root_dir: str) -> Evaluation:
if args.wandb_run_paths:
api = wandb.Api()
args, config, player_1_model_path = load_player(
api, args.wandb_run_paths[0], args, root_dir
)
_, _, player_2_model_path = load_player(
api, args.wandb_run_paths[1], args, root_dir
)
elif args.model_file_paths:
hyperparams = load_hyperparams(args.algo, args.env)
config = Config(args, hyperparams, root_dir)
player_1_model_path, player_2_model_path = args.model_file_paths
else:
raise ValueError("Must specify 2 wandb_run_paths or 2 model_file_paths")
print(args)
set_seeds(args.seed, args.use_deterministic_algorithms)
env_make_kwargs = (
config.eval_hyperparams.get("env_overrides", {}).get("make_kwargs", {}).copy()
)
env_make_kwargs["num_selfplay_envs"] = args.n_envs * 2
env = make_eval_env(
config,
EnvHyperparams(**config.env_hyperparams),
override_hparams={
"n_envs": args.n_envs,
"selfplay_bots": {
player_2_model_path: args.n_envs,
},
"self_play_kwargs": {
"num_old_policies": 0,
"save_steps": np.inf,
"swap_steps": np.inf,
"bot_always_player_2": True,
},
"bots": None,
"make_kwargs": env_make_kwargs,
},
render=args.render,
normalize_load_path=player_1_model_path,
)
if args.video_path:
env = VecEpisodeRecorder(
env, args.video_path, max_video_length=18000, num_episodes=args.n_episodes
)
device = get_device(config, env)
policy = make_policy(
args.algo,
env,
device,
load_path=player_1_model_path,
**config.policy_hyperparams,
).eval()
deterministic = (
args.deterministic_eval
if args.deterministic_eval is not None
else config.eval_hyperparams.get("deterministic", True)
)
return Evaluation(
policy,
evaluate(
env,
policy,
args.n_episodes,
render=args.render,
deterministic=deterministic,
print_returns=not args.no_print_returns,
),
config,
)
class PlayerData(NamedTuple):
args: SelfplayEvalArgs
config: Config
model_path: str
def load_player(
api: wandb.Api, run_path: str, args: SelfplayEvalArgs, root_dir: str
) -> PlayerData:
args = copy.copy(args)
run = api.run(run_path)
params = run.config
args.algo = params["algo"]
args.env = params["env"]
args.seed = params.get("seed", None)
args.use_deterministic_algorithms = params.get("use_deterministic_algorithms", True)
config = Config(args, Hyperparams.from_dict_with_extra_fields(params), root_dir)
model_path = config.model_dir_path(best=args.best, downloaded=True)
model_archive_name = config.model_dir_name(best=args.best, extension=".zip")
run.file(model_archive_name).download()
if os.path.isdir(model_path):
shutil.rmtree(model_path)
shutil.unpack_archive(model_archive_name, model_path)
os.remove(model_archive_name)
return PlayerData(args, config, model_path)