VPG playing LunarLander-v2 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
03bb9cd
# Support for PyTorch mps mode (https://pytorch.org/docs/stable/notes/mps.html) | |
import os | |
from rl_algo_impls.shared.callbacks import Callback | |
from rl_algo_impls.shared.callbacks.self_play_callback import SelfPlayCallback | |
from rl_algo_impls.wrappers.self_play_wrapper import SelfPlayWrapper | |
from rl_algo_impls.wrappers.vectorable_wrapper import find_wrapper | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
import dataclasses | |
import shutil | |
from dataclasses import asdict, dataclass | |
from typing import Any, Dict, List, Optional, Sequence | |
import yaml | |
from torch.utils.tensorboard.writer import SummaryWriter | |
import wandb | |
from rl_algo_impls.runner.config import Config, EnvHyperparams, RunArgs | |
from rl_algo_impls.runner.running_utils import ( | |
ALGOS, | |
get_device, | |
hparam_dict, | |
load_hyperparams, | |
make_policy, | |
plot_eval_callback, | |
set_seeds, | |
) | |
from rl_algo_impls.shared.callbacks.eval_callback import EvalCallback | |
from rl_algo_impls.shared.callbacks.microrts_reward_decay_callback import ( | |
MicrortsRewardDecayCallback, | |
) | |
from rl_algo_impls.shared.stats import EpisodesStats | |
from rl_algo_impls.shared.vec_env import make_env, make_eval_env | |
class TrainArgs(RunArgs): | |
wandb_project_name: Optional[str] = None | |
wandb_entity: Optional[str] = None | |
wandb_tags: Sequence[str] = dataclasses.field(default_factory=list) | |
wandb_group: Optional[str] = None | |
def train(args: TrainArgs): | |
print(args) | |
hyperparams = load_hyperparams(args.algo, args.env) | |
print(hyperparams) | |
config = Config(args, hyperparams, os.getcwd()) | |
wandb_enabled = bool(args.wandb_project_name) | |
if wandb_enabled: | |
wandb.tensorboard.patch( | |
root_logdir=config.tensorboard_summary_path, pytorch=True | |
) | |
wandb.init( | |
project=args.wandb_project_name, | |
entity=args.wandb_entity, | |
config=asdict(hyperparams), | |
name=config.run_name(), | |
monitor_gym=True, | |
save_code=True, | |
tags=args.wandb_tags, | |
group=args.wandb_group, | |
) | |
wandb.config.update(args) | |
tb_writer = SummaryWriter(config.tensorboard_summary_path) | |
set_seeds(args.seed, args.use_deterministic_algorithms) | |
env = make_env( | |
config, EnvHyperparams(**config.env_hyperparams), tb_writer=tb_writer | |
) | |
device = get_device(config, env) | |
policy_factory = lambda: make_policy( | |
args.algo, env, device, **config.policy_hyperparams | |
) | |
policy = policy_factory() | |
algo = ALGOS[args.algo](policy, env, device, tb_writer, **config.algo_hyperparams) | |
num_parameters = policy.num_parameters() | |
num_trainable_parameters = policy.num_trainable_parameters() | |
if wandb_enabled: | |
wandb.run.summary["num_parameters"] = num_parameters # type: ignore | |
wandb.run.summary["num_trainable_parameters"] = num_trainable_parameters # type: ignore | |
else: | |
print( | |
f"num_parameters = {num_parameters} ; " | |
f"num_trainable_parameters = {num_trainable_parameters}" | |
) | |
eval_env = make_eval_env(config, EnvHyperparams(**config.env_hyperparams)) | |
record_best_videos = config.eval_hyperparams.get("record_best_videos", True) | |
eval_callback = EvalCallback( | |
policy, | |
eval_env, | |
tb_writer, | |
best_model_path=config.model_dir_path(best=True), | |
**config.eval_callback_params(), | |
video_env=make_eval_env( | |
config, | |
EnvHyperparams(**config.env_hyperparams), | |
override_hparams={"n_envs": 1}, | |
) | |
if record_best_videos | |
else None, | |
best_video_dir=config.best_videos_dir, | |
additional_keys_to_log=config.additional_keys_to_log, | |
wandb_enabled=wandb_enabled, | |
) | |
callbacks: List[Callback] = [eval_callback] | |
if config.hyperparams.microrts_reward_decay_callback: | |
callbacks.append(MicrortsRewardDecayCallback(config, env)) | |
selfPlayWrapper = find_wrapper(env, SelfPlayWrapper) | |
if selfPlayWrapper: | |
callbacks.append(SelfPlayCallback(policy, policy_factory, selfPlayWrapper)) | |
algo.learn(config.n_timesteps, callbacks=callbacks) | |
policy.save(config.model_dir_path(best=False)) | |
eval_stats = eval_callback.evaluate(n_episodes=10, print_returns=True) | |
plot_eval_callback(eval_callback, tb_writer, config.run_name()) | |
log_dict: Dict[str, Any] = { | |
"eval": eval_stats._asdict(), | |
} | |
if eval_callback.best: | |
log_dict["best_eval"] = eval_callback.best._asdict() | |
log_dict.update(asdict(hyperparams)) | |
log_dict.update(vars(args)) | |
with open(config.logs_path, "a") as f: | |
yaml.dump({config.run_name(): log_dict}, f) | |
best_eval_stats: EpisodesStats = eval_callback.best # type: ignore | |
tb_writer.add_hparams( | |
hparam_dict(hyperparams, vars(args)), | |
{ | |
"hparam/best_mean": best_eval_stats.score.mean, | |
"hparam/best_result": best_eval_stats.score.mean | |
- best_eval_stats.score.std, | |
"hparam/last_mean": eval_stats.score.mean, | |
"hparam/last_result": eval_stats.score.mean - eval_stats.score.std, | |
}, | |
None, | |
config.run_name(), | |
) | |
tb_writer.close() | |
if wandb_enabled: | |
shutil.make_archive( | |
os.path.join(wandb.run.dir, config.model_dir_name()), # type: ignore | |
"zip", | |
config.model_dir_path(), | |
) | |
wandb.finish() | |