Upload model and tool
Browse files- __init__.py +0 -0
- config.json +17 -14
- pair_classification.py +0 -33
- pair_classification_tool.py +42 -0
- pytorch_model.bin +2 -2
- tokenizer.json +0 -0
- tokenizer_config.json +2 -4
- tool_config.json +3 -0
- vocab.txt +0 -0
__init__.py
ADDED
File without changes
|
config.json
CHANGED
@@ -1,33 +1,36 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"BertForSequenceClassification"
|
4 |
],
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"classifier_dropout": null,
|
7 |
-
"
|
8 |
-
|
9 |
-
"impl": "pair_classification.PairClassificationPipeline",
|
10 |
-
"pt": [
|
11 |
-
"AutoModelForSequenceClassification"
|
12 |
-
],
|
13 |
-
"tf": []
|
14 |
-
}
|
15 |
-
},
|
16 |
"hidden_act": "gelu",
|
17 |
"hidden_dropout_prob": 0.1,
|
18 |
-
"hidden_size":
|
|
|
|
|
|
|
|
|
19 |
"initializer_range": 0.02,
|
20 |
-
"intermediate_size":
|
|
|
|
|
|
|
|
|
21 |
"layer_norm_eps": 1e-12,
|
22 |
"max_position_embeddings": 512,
|
23 |
"model_type": "bert",
|
24 |
-
"num_attention_heads":
|
25 |
-
"num_hidden_layers":
|
26 |
"pad_token_id": 0,
|
27 |
"position_embedding_type": "absolute",
|
|
|
28 |
"torch_dtype": "float32",
|
29 |
"transformers_version": "4.29.0.dev0",
|
30 |
"type_vocab_size": 2,
|
31 |
"use_cache": true,
|
32 |
-
"vocab_size":
|
33 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "sgugger/bert-finetuned-mrpc",
|
3 |
"architectures": [
|
4 |
"BertForSequenceClassification"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
8 |
+
"finetuning_task": "mrpc",
|
9 |
+
"gradient_checkpointing": false,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"hidden_act": "gelu",
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "not_equivalent",
|
15 |
+
"1": "equivalent"
|
16 |
+
},
|
17 |
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"equivalent": 1,
|
21 |
+
"not_equivalent": 0
|
22 |
+
},
|
23 |
"layer_norm_eps": 1e-12,
|
24 |
"max_position_embeddings": 512,
|
25 |
"model_type": "bert",
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_hidden_layers": 12,
|
28 |
"pad_token_id": 0,
|
29 |
"position_embedding_type": "absolute",
|
30 |
+
"problem_type": "single_label_classification",
|
31 |
"torch_dtype": "float32",
|
32 |
"transformers_version": "4.29.0.dev0",
|
33 |
"type_vocab_size": 2,
|
34 |
"use_cache": true,
|
35 |
+
"vocab_size": 28996
|
36 |
}
|
pair_classification.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
from transformers import Pipeline
|
4 |
-
|
5 |
-
|
6 |
-
def softmax(outputs):
|
7 |
-
maxes = np.max(outputs, axis=-1, keepdims=True)
|
8 |
-
shifted_exp = np.exp(outputs - maxes)
|
9 |
-
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
|
10 |
-
|
11 |
-
|
12 |
-
class PairClassificationPipeline(Pipeline):
|
13 |
-
def _sanitize_parameters(self, **kwargs):
|
14 |
-
preprocess_kwargs = {}
|
15 |
-
if "second_text" in kwargs:
|
16 |
-
preprocess_kwargs["second_text"] = kwargs["second_text"]
|
17 |
-
return preprocess_kwargs, {}, {}
|
18 |
-
|
19 |
-
def preprocess(self, text, second_text=None):
|
20 |
-
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
|
21 |
-
|
22 |
-
def _forward(self, model_inputs):
|
23 |
-
return self.model(**model_inputs)
|
24 |
-
|
25 |
-
def postprocess(self, model_outputs):
|
26 |
-
logits = model_outputs.logits[0].numpy()
|
27 |
-
probabilities = softmax(logits)
|
28 |
-
|
29 |
-
best_class = np.argmax(probabilities)
|
30 |
-
label = self.model.config.id2label[best_class]
|
31 |
-
score = probabilities[best_class].item()
|
32 |
-
logits = logits.tolist()
|
33 |
-
return {"label": label, "score": score, "logits": logits}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pair_classification_tool.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
from transformers.tools import PipelineTool
|
4 |
+
|
5 |
+
|
6 |
+
class TextPairClassificationTool(PipelineTool):
|
7 |
+
default_checkpoint = "sgugger/bert-finetuned-mrpc"
|
8 |
+
pre_processor_class = AutoTokenizer
|
9 |
+
model_class = AutoModelForSequenceClassification
|
10 |
+
|
11 |
+
description = (
|
12 |
+
"classifies if two texts in English are similar or not using the labels {labels}. It takes two inputs named "
|
13 |
+
"`text` and `second_text` which should be in English and returns a dictionary with two keys named 'label' "
|
14 |
+
"(the predicted label ) and 'score' (the probability associated to it)."
|
15 |
+
)
|
16 |
+
|
17 |
+
def post_init(self):
|
18 |
+
if isinstance(self.model, str):
|
19 |
+
config = AutoConfig.from_pretrained(self.model)
|
20 |
+
else:
|
21 |
+
config = self.model.config
|
22 |
+
|
23 |
+
labels = list(config.label2id.keys())
|
24 |
+
|
25 |
+
if len(labels) > 1:
|
26 |
+
labels = [f"'{label}'" for label in labels]
|
27 |
+
labels_string = ", ".join(labels[:-1])
|
28 |
+
labels_string += f", and {labels[-1]}"
|
29 |
+
else:
|
30 |
+
raise ValueError("Not enough labels.")
|
31 |
+
|
32 |
+
self.description = self.description.replace("{labels}", labels_string)
|
33 |
+
|
34 |
+
def encode(self, text, second_text):
|
35 |
+
return self.pre_processor(text, second_text, return_tensors="pt")
|
36 |
+
|
37 |
+
def decode(self, outputs):
|
38 |
+
logits = outputs.logits
|
39 |
+
scores = torch.nn.functional.softmax(logits, dim=-1)
|
40 |
+
label_id = torch.argmax(logits[0]).item()
|
41 |
+
label = self.model.config.id2label[label_id]
|
42 |
+
return {"label": label, "score": scores[0][label_id].item()}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d51a9228c2bfe086be5020b9627e5693324d9f65e7e99bfdb5a1952d213cafa
|
3 |
+
size 433320053
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
{
|
2 |
"clean_up_tokenization_spaces": true,
|
3 |
"cls_token": "[CLS]",
|
4 |
-
"
|
5 |
-
"do_lower_case": true,
|
6 |
"mask_token": "[MASK]",
|
7 |
-
"model_max_length":
|
8 |
-
"never_split": null,
|
9 |
"pad_token": "[PAD]",
|
10 |
"sep_token": "[SEP]",
|
11 |
"strip_accents": null,
|
|
|
1 |
{
|
2 |
"clean_up_tokenization_spaces": true,
|
3 |
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": false,
|
|
|
5 |
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
|
|
7 |
"pad_token": "[PAD]",
|
8 |
"sep_token": "[SEP]",
|
9 |
"strip_accents": null,
|
tool_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"custom_tools": {"text-pair-classification": "pair_classification_tool.TextPairClassificationTool"}
|
3 |
+
}
|
vocab.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|