
Big Bird: Transformers for Longer Sequences

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham,

Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed
Google Research

{manzilz, gurug, avinavadubey}@google.com

Abstract

Transformers-based models, such as BERT, have been one of the most successful
deep learning models for NLP. Unfortunately, one of their core limitations is the
quadratic dependency (mainly in terms of memory) on the sequence length due to
their full attention mechanism. To remedy this, we propose, BIGBIRD, a sparse
attention mechanism that reduces this quadratic dependency to linear. We show
that BIGBIRD is a universal approximator of sequence functions and is Turing
complete, thereby preserving these properties of the quadratic, full attention model.
Along the way, our theoretical analysis reveals some of the benefits of having
O(1) global tokens (such as CLS), that attend to the entire sequence as part of the
sparse attention mechanism. The proposed sparse attention can handle sequences
of length up to 8x of what was previously possible using similar hardware. As
a consequence of the capability to handle longer context, BIGBIRD drastically
improves performance on various NLP tasks such as question answering and
summarization. We also propose novel applications to genomics data.

1 Introduction

Models based on Transformers [91], such as BERT [22, 63], are wildly successful for a wide
variety of Natural Language Processing (NLP) tasks and consequently are mainstay of modern NLP
research. Their versatility and robustness are the primary drivers behind the wide-scale adoption of
Transformers. The model is easily adapted for a diverse range of sequence based tasks – as a seq2seq
model for translation [91], summarization [66], generation [15], etc. or as a standalone encoders
for sentiment analysis [83], POS tagging [65], machine reading comprehension [93], etc. – and it
is known to vastly outperform previous sequence models like LSTM [37]. The key innovation in
Transformers is the introduction of a self-attention mechanism, which can be evaluated in parallel
for each token of the input sequence, eliminating the sequential dependency in recurrent neural
networks, like LSTM. This parallelism enables Transformers to leverage the full power of modern
SIMD hardware accelerators like GPUs/TPUs, thereby facilitating training of NLP models on datasets
of unprecedented size. This ability to train on large scale data has led to surfacing of models like
BERT [22] and T5 [75], which pretrain transformers on large general purpose corpora and transfer
the knowledge to down-stream task. The pretraining has led to significant improvement in low data
regime downstream tasks [51] as well as tasks with sufficient data [101] and thus have been a major
force behind the ubiquity of transformers in contemporary NLP.

The self-attention mechanism overcomes constraints of RNNs (namely the sequential nature of RNN)
by allowing each token in the input sequence to attend independently to every other token in the
sequence. This design choice has several interesting repercussions. In particular, the full self-attention
have computational and memory requirement that is quadratic in the sequence length. We note that
while the corpus can be large, the sequence length, which provides the context in many applications
is very limited. Using commonly available current hardware and model sizes, this requirement
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translates to roughly being able to handle input sequences of length 512 tokens. This reduces its
direct applicability to tasks that require larger context, like QA [60], document classification, etc.

However, while we know that self-attention and Transformers are useful, our theoretical understanding
is rudimentary. What aspects of the self-attention model are necessary for its performance? What
can we say about the expressivity of Transformers and similar models? Apriori, it was not even clear
from the design if the proposed self-attention mechanism was as effective as RNNs. For example, the
self-attention does not even obey sequence order as it is permutation equivariant. This concern has
been partially resolved, as Yun et al. [104] showed that transformers are expressive enough to capture
all continuous sequence to sequence functions with a compact domain. Meanwhile, Pérez et al. [72]
showed that the full transformer is Turing Complete (i.e. can simulate a full Turing machine). Two
natural questions arise: Can we achieve the empirical benefits of a fully quadratic self-attention
scheme using fewer inner-products? Do these sparse attention mechanisms preserve the expressivity
and flexibility of the original network?

In this paper, we address both the above questions and produce a sparse attention mechanism that
improves performance on a multitude of tasks that require long contexts. We systematically develop
BIGBIRD, an attention mechanism whose complexity is linear in the number of tokens (Sec. 2). We
take inspiration from graph sparsification methods and understand where the proof for expressiveness
of Transformers breaks down when full-attention is relaxed to form the proposed attention pattern.
This understanding helped us develop BIGBIRD, which is theoretically as expressive and also
empirically useful. In particular, our BIGBIRD consists of three main part:

• A set of g global tokens attending on all parts of the sequence.
• All tokens attending to a set of w local neighboring tokens.
• All tokens attending to a set of r random tokens.

This leads to a high performing attention mechanism scaling to much longer sequence lengths (8x).

To summarize, our main contributions are:

1. BIGBIRD satisfies all the known theoretical properties of full transformer (Sec. 3). In particular,
we show that adding extra tokens allows one to express all continuous sequence to sequence
functions with only O(n)-inner products. Furthermore, we show that under standard assumptions
regarding precision, BIGBIRD is Turing complete.

2. Empirically, we show that the extended context modelled by BIGBIRD benefits variety of NLP
tasks. We achieve state of the art results for question answering and document summarization on
a number of different datasets. Summary of these results are presented in Sec. 4.

3. Lastly, we introduce a novel application of attention based models where long contexts are
beneficial: extracting contextual representations of genomics sequences like DNA. With longer
masked LM pretraining, BIGBIRD improves performance on downstream tasks such as promoter-
region and chromatin profile prediction (Sec. 5).

1.1 Related Work

There have been a number of interesting attempts, that were aimed at alleviating the quadratic
dependency of Transformers, which can broadly categorized into two directions. First line of work
embraces the length limitation and develops method around it. Simplest methods in this category
just employ sliding window [93], but in general most work fits in the following general paradigm:
using some other mechanism select a smaller subset of relevant contexts to feed in the transformer
and optionally iterate, i.e. call transformer block multiple time with different contexts each time.
Most prominently, SpanBERT [42], ORQA [54], REALM [34], RAG [57] have achieved strong
performance for different tasks. However, it is worth noting that these methods often require significant
engineering efforts (like back prop through large scale nearest neighbor search) and are hard to train.

Second line of work questions if full attention is essential and have tried to come up with approaches
that do not require full attention, thereby reducing the memory and computation requirements.
Prominently, Dai et al. [21], Sukhbaatar et al. [82], Rae et al. [74] have proposed auto-regresive models
that work well for left-to-right language modeling but suffer in tasks which require bidirectional
context. Child et al. [16] proposed a sparse model that reduces the complexity to O(n

√
n), Kitaev

et al. [49] further reduced the complexity to O(n log(n)) by using LSH to compute nearest neighbors.
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(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence
of attention. (a) random attention with r = 2, (b) sliding window attention with w = 3 (c) global
attention with g = 2. (d) the combined BIGBIRD model.

Ye et al. [103] proposed binary partitions of the data where as Qiu et al. [73] reduced complexity by
using block sparsity. Recently, Longformer [8] introduced a localized sliding window based mask with
few global mask to reduce computation and extended BERT to longer sequence based tasks. Finally,
our work is closely related to and built on the work of Extended Transformers Construction [4].
This work was designed to encode structure in text for transformers. The idea of global tokens was
used extensively by them to achieve their goals. Our theoretical work can be seen as providing
a justification for the success of these models as well. It is important to note that most of the
aforementioned methods are heuristic based and empirically are not as versatile and robust as the
original transformer, i.e. the same architecture do not attain SoTA on multiple standard benchmarks.
(There is one exception of Longformer which we include in all our comparisons, see App. E.3 for a
more detailed comparison). Moreover, these approximations do not come with theoretical guarantees.

2 BIGBIRD Architecture

In this section, we describe the BIGBIRD model using the generalised attention mechanism that
is used in each layer of transformer operating on an input sequence X = (x1, ...,xn) ∈ Rn×d.
The generalized attention mechanism is described by a directed graph D whose vertex set is [n] =
{1, . . . , n}. The set of arcs (directed edges) represent the set of inner products that the attention
mechanism will consider. Let N(i) denote the out-neighbors set of node i in D, then the ith output
vector of the generalized attention mechanism is defined as

ATTND(X)i = xi +

H∑
h=1

σ
(
Qh(xi)Kh(XN(i))

T
)
· Vh(XN(i)) (AT)

where Qh,Kh : Rd → Rm are query and key functions respectively, Vh : Rd → Rd is a value
function, σ is a scoring function (e.g. softmax or hardmax) and H denotes the number of heads. Also
note XN(i) corresponds to the matrix formed by only stacking {xj : j ∈ N(i)} and not all the inputs.
If D is the complete digraph, we recover the full quadratic attention mechanism of Vaswani et al.
[91]. To simplify our exposition, we will operate on the adjacency matrix A of the graph D even
though the underlying graph maybe sparse. To elaborate, A ∈ [0, 1]n×n with A(i, j) = 1 if query
i attends to key j and is zero otherwise. For example, when A is the ones matrix (as in BERT), it
leads to quadratic complexity, since all tokens attend on every other token. This view of self-attention
as a fully connected graph allows us to exploit existing graph theory to help reduce its complexity.
The problem of reducing the quadratic complexity of self-attention can now be seen as a graph
sparsification problem. It is well-known that random graphs are expanders and can approximate
complete graphs in a number of different contexts including in their spectral properties [80, 38]. We
believe sparse random graph for attention mechanism should have two desiderata: small average path
length between nodes and a notion of locality, each of which we discuss below.

Let us consider the simplest random graph construction, known as Erdős-Rényi model, where each
edge is independently chosen with a fixed probability. In such a random graph with just Θ̃(n)
edges, the shortest path between any two nodes is logarithmic in the number of nodes [17, 43]. As
a consequence, such a random graph approximates the complete graph spectrally and its second
eigenvalue (of the adjacency matrix) is quite far from the first eigenvalue [9, 10, 6]. This property
leads to a rapid mixing time for random walks in the grpah, which informally suggests that information
can flow fast between any pair of nodes. Thus, we propose a sparse attention where each query attends
over r random number of keys i.e. A(i, ·) = 1 for r randomly chosen keys (see Fig. 1a).

3

Mobile User

Mobile User

Mobile User



The second viewpoint which inspired the creation of BIGBIRD is that most contexts within NLP
and computational biology have data which displays a great deal of locality of reference. In this
phenomenon, a great deal of information about a token can be derived from its neighboring tokens.
Most pertinently, Clark et al. [19] investigated self-attention models in NLP tasks and concluded that
that neighboring inner-products are extremely important. The concept of locality, proximity of tokens
in linguistic structure, also forms the basis of various linguistic theories such as transformational-
generative grammar. In the terminology of graph theory, clustering coefficient is a measure of locality
of connectivity, and is high when the graph contains many cliques or near-cliques (subgraphs that
are almost fully interconnected). Simple Erdős-Rényi random graphs do not have a high clustering
coefficient [84], but a class of random graphs, known as small world graphs, exhibit high clustering
coefficient [94]. A particular model introduced by Watts and Strogatz [94] is of high relevance to us
as it achieves a good balance between average shortest path and the notion of locality. The generative
process of their model is as follows: Construct a regular ring lattice, a graph with n nodes each
connected to w neighbors, w/2 on each side.

Model MLM SQuAD MNLI

BERT-base 64.2 88.5 83.4
Random (R) 60.1 83.0 80.2
Window (W) 58.3 76.4 73.1
R + W 62.7 85.1 80.5

Table 1: Building block comparison @512

In other words we begin with a sliding window
on the nodes. Then a random subset (k%) of all
connections is replaced with a random connection.
The other (100 - k)% local connections are retained.
However, deleting such random edges might be in-
efficient on modern hardware, so we retain it, which
will not affect its properties. In summary, to capture
these local structures in the context, in BIGBIRD,
we define a sliding window attention, so that during
self attention of width w, query at location i attends from i− w/2 to i+ w/2 keys. In our notation,
A(i, i−w/2 : i+w/2) = 1 (see Fig. 1b). As an initial sanity check, we performed basic experiments
to test whether these intuitions are sufficient in getting performance close to BERT like models, while
keeping attention linear in the number of tokens. We found that random blocks and local window
were insufficient in capturing all the context necessary to compete with the performance of BERT.

The final piece of BIGBIRD is inspired from our theoretical analysis (Sec. 3), which is critical
for empirical performance. More specifically, our theory utilizes the importance of “global tokens”
(tokens that attend to all tokens in the sequence and to whom all tokens attend to (see Fig. 1c). These
global tokens can be defined in two ways:

• BIGBIRD-ITC: In internal transformer construction (ITC), we make some existing tokens “global”,
which attend over the entire sequence. Concretely, we choose a subset G of indices (with
g := |G|), such that A(i, :) = 1 and A(:, i) = 1 for all i ∈ G.

• BIGBIRD-ETC: In extended transformer construction (ETC), we include additional “global”
tokens such as CLS. Concretely, we add g global tokens that attend to all existing tokens. In
our notation, this corresponds to creating a new matrix B ∈ [0, 1](N+g)×(N+g) by adding
g rows to matrix A, such that B(i, :) = 1, and B(:, i) = 1 for all i ∈ {1, 2, . . . g}, and
B(g + i, g + j) = A(i, j)∀ i, j ∈ {1, . . . , N}. This adds extra location to store context and as
we will see in the experiments improves performance.

The final attention mechanism for BIGBIRD (Fig. 1d) has all three of these properties: queries attend
to r random keys, each query attends to w/2 tokens to the left of its location and w/2 to the right of
its location and they contain g global tokens (The global tokens can be from existing tokens or extra
added tokens). We provide implementation details in App. D.

3 Theoretical Results about Sparse Attention Mechanism

In this section, we will show that that sparse attention mechanisms are as powerful and expressive as
full-attention mechanisms in two respects. First, we show that when sparse attention mechanisms
are used in a standalone encoder (such as BERT), they are Universal Approximators of sequence
to sequence functions in the style of Yun et al. [104]. We note that this property was also explored
theoretically in contemporary work Yun et al. [105]. Second, unlike [105], we further show that
sparse encoder-decoder transformers are Turing Complete (assuming the same conditions defined
in [72]). Complementing the above positive results, we also show that moving to a sparse-attention
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mechanism incurs a cost, i.e. there is no free lunch. In Sec. 3.4, we show lower bounds by exhibiting
a natural task where any sufficiently sparse mechanism will require polynomially more layers.

3.1 Notation

The complete Transformer encoder stack is nothing but the repeated application of a single-layer
encoder (with independent parameters). We denote class of such Transformer encoders stack, defined
using generalized encoder (Sec. 2), by T H,m,qD which consists of H-heads with head size m and q is
the hidden layer size of the output network, and the attention layer is defined by the directed graph D.

The key difference between our proposed attention mechanism to that of Vaswani et al. [91], Yun et al.
[104] is that we add a special token at the beginning of each sequence and assign it a special vector.
We will refer to this as x0. Therefore our graph D will have vertex set {0} ∪ [n] = {0, 1, 2, . . . , n}.
We will assume that this extra node and its respective vector will be dropped at the final output layer
of transformer. To avoid cumbersome notation, we will still treat transformer as mapping sequences
X ∈ Rn×d to Rn×d. We will also allow the transformer to append position embeddings E ∈ Rd×n
to matrix X in the input layer.

Finally, we need to define the function class and distance measure for proving universal approximation
property. LetFCD denote the set of continuous functions f : [0, 1]n×d → Rn×d which are continuous
with respect to the topology defined by `p norm. Recall for any p ≥ 1, the `p distance is dp(f1, f2) =(∫
‖f1(X)− f2(X)‖ppdX

)1/p
.

3.2 Universal Approximators

Definition 1. The star-graph S centered at 0 is the graph defined on {0, . . . , n}. The neighborhood
of all vertices i is N(i) = {0, i} for i ∈ {1 . . . n} and N(0) = {1, . . . n}.

Our main theorem is that the sparse attention mechanism defined by any graph containing S is a
universal approximator:

Theorem 1. Given 1 < p < ∞ and ε > 0, for any f ∈ FCD, there exists a transformer with
sparse-attention, g ∈ T H,m,qD such that dp(f, g) ≤ ε where D is any graph containing star graph S.

To prove the theorem, we will follow the standard proof structure outlined in [104].

Step 1: Approximate FCD by piece-wise constant functions. Since f is a continuous function
with bounded domain [0, 1)n×d, we will approximate it with a suitable piece-wise constant function.
This is accomplished by a suitable partition of the region [0, 1) into a grid of granularity δ to get
a discrete set Gδ. Therefore, we can assume that we are dealing with a function f̄ : Gδ → Rn×d,
where dp(f, f̄) ≤ ε

3 .

Step 2: Approximate piece-wise constant functions by modified transformers. This is the key
step of the proof where the self-attention mechanism is used to generate a contextual-mapping of the
input. Informally, a contextual mapping is a unique code for the pair consisting of a matrix (X,xi)
and a column. Its uniqueness allows the Feed forward layers to use each code to map it to a unique
output column.

The main technical challenge is computing the contextual mapping using only sparse attention
mechanism. This was done in [104] using a “selective” shift operator which shift up entries that are
in a specific interval. Key to their proof was the fact that the shift, was exactly the range of the largest
entry to the smallest entry.

Creating a contextual mapping with a sparse attention mechanism is quite a challenge. In particular,
because each query only attends to a few keys, it is not at all clear that sufficient information can
be corralled to make a contextual embedding of the entire matrix. To get around this, we develop a
sparse shift operator which shifts the entries of the matrices if they lie in a certain range. The exact
amount of the shift is controlled by the directed sparse attention graphg D. The second key ingredient
is the use of additional global token. By carefully applying the operator to a set of chosen ranges, we
will show that each column will contain a unique mapping of the full mapping. Therefore, we can
augment the loss of inner-products in the self attention mechanism by using multiple layers and an
auxiliary global token.
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Step 3: Approximate modified transformers by original Transformers: The final step is to ap-
proximate the modified transformers by the original transformer which uses ReLU and softmax.

We provide the full details in App. A.

3.3 Turing Completeness

Transformers are a very general class. In the original paper of Vaswani et al. [91], they were used in
both an encoder and a decoder. While the previous section outlined how powerful just the encoders
were, another natural question is to ask what the additional power of both a decoder along with
an encoder is? Pérez et al. [72] showed that the full transformer based on a quadratic attention
mechanism is Turing Complete. This result makes one unrealistic assumption, which is that the
model works on arbitrary precision model. Of course, this is necessary as otherwise, Transformers
are bounded finite state machines and cannot be Turing Complete.

It is natural to ask if the full attention mechanism is necessary. Or can a sparse attention mechanism
also be used to simulate any Turing Machine? We show that this is indeed the case: we can use a
sparse encoder and sparse decoder to simulate any Turing Machine.

To use the sparse attention mechanism in the transformer architecture, we need to define a suitable
modification where each token only reacts to previous tokens. Unlike the case for BERT, where the
entire attention mechanism is applied once, in full transformers, the sparse attention mechanism at
decoder side is used token by token. Secondly the work of Pérez et al. [72], uses each token as a
representation of the tape history and uses the full attention to move and retrieve the correct tape
symbol. Most of the construction of Pérez et al. [72] goes through for sparse attentions, except for
their addressing scheme to point back in history (Lemma B.4 in [72]). We show how to simulate this
using a sparse attention mechanism and defer the details to App. B.

3.4 Limitations

We demonstrate a natural task which can be solved by the full attention mechanism in O(1)-layers.
However, under standard complexity theoretic assumptions, this problem requires Ω̃(n)-layers for
any sparse attention layers with Õ(n) edges (not just BIGBIRD). (Here Õ hides poly-logarthmic
factors). Consider the simple problem of finding the corresponding furthest vector for each vector in
the given sequence of length n. Formally,

Task 1. Given n unit vectors {u1, . . . , un}, find f(u1, . . . , un)→ (u1∗ , . . . , un∗) where for a fixed
j ∈ [n], we define j∗ = arg maxk ‖uk − uj‖22.

Finding vectors that are furthest apart boils down to minimize inner product search in case of unit
vectors. For a full-attention mechanism with appropriate query and keys, this task is very easy as we
can evaluate all pair-wise inner products.

The impossibility for sparse-attention follows from hardness results stemming from Orthogonal Vector
Conjecture(OVC) [1, 2, 7, 96]. The OVC is a widely used assumption in fine-grained complexity.
Informally, it states that one cannot determine if the minimum inner product among n boolean vectors
is 0 in subquadratic time. In App. C, we show a reduction using OVC to show that if a transformer
g ∈ T H=1,m=2d,q=0

D for any sparse directed graph D can evaluate the Task 1, it can solve the
orthogonal vector problem.
Proposition 1. There exists a single layer full self-attention g ∈ T H=1,m=2d,q=0 that can evaluate
Task 1, i.e. g(u1, ..., un) = [u1∗ , . . . , un∗ ], but for any sparse-attention graph D with Õ(n) edges
(i.e. inner product evaluations), would require Ω̃(n1−o(1)) layers.
We give a formal proof of this fact in App. C.

4 Experiments: Natural Language Processing

In this section our goal is to showcase benefits of modeling longer input sequence for NLP tasks,
for which we select three representative tasks. We begin with basic masked language modeling
(MLM; Devlin et al. 22) to check if better contextual representations can be learnt by utilizing longer
contiguous sequences. Next, we consider QA with supporting evidence, for which capability to handle
longer sequence would allow us to retrieve more evidence using crude systems like TF-IDF/BM25.
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Model HotpotQA NaturalQ TriviaQA WikiHop

Ans Sup Joint LA SA Full MCQ

RoBERTa 73.5 83.4 63.5 - - 74.3 72.4
Longformer 74.3 84.4 64.4 - - 75.2 75.0
BIGBIRD-ITC 75.7 86.8 67.7 70.8 53.3 79.5 75.9
BIGBIRD-ETC 75.5 87.1 67.8 73.9 54.9 78.7 75.9

Table 2: QA Dev results using Base size models. We report accuracy for WikiHop and F1 for
HotpotQA, Natural Questions, and TriviaQA.

Model HotpotQA NaturalQ TriviaQA WikiHop

Ans Sup Joint LA SA Full Verified MCQ

HGN [26] 82.2 88.5 74.2 - - - - -
GSAN 81.6 88.7 73.9 - - - - -
ReflectionNet [32] - - - 77.1 64.1 - - -
RikiNet-v2 [61] - - - 76.1 61.3 - - -
Fusion-in-Decoder [39] - - - - - 84.4 90.3 -
SpanBERT [42] - - - - - 79.1 86.6 -
MRC-GCN [87] - - - - - - - 78.3
MultiHop [14] - - - - - - - 76.5
Longformer [8] 81.2 88.3 73.2 - - 77.3 85.3 81.9

BIGBIRD-ETC 81.2 89.1 73.6 77.8 57.9 84.5 92.4 82.3

Table 3: Fine-tuning results on Test set for QA tasks. The Test results (F1 for HotpotQA, Natural
Questions, TriviaQA, and Accuracy for WikiHop) have been picked from their respective leaderboard.
For each task the top-3 leaders were picked not including BIGBIRD-etc. For Natural Questions
Long Answer (LA), TriviaQA, and WikiHop, BIGBIRD-ETC is the new state-of-the-art. On
HotpotQA we are third in the leaderboard by F1 and second by Exact Match (EM).

Finally, we tackle long document classification where discriminating information may not be located
in first 512 tokens. Below we summarize the results for BIGBIRD using sequence length 40961, while
we defer all other setup details including computational resources, batch size, step size, to App. E.

Pretraining and MLM We follow [22, 63] to create base and large versions of BIGBIRD and
pretrain it using MLM objective. This task involves predicting a random subset of tokens which
have been masked out. We use four standard data-sets for pretraining (listed in App. E.1, Tab. 9),
warm-starting from the public RoBERTa checkpoint2. We compare performance in predicting the
masked out tokens in terms of bits per character, following [8]. As seen in App. E.1, Tab. 10,
both BIGBIRD and Longformer perform better than limited length RoBERTa, with BIGBIRD-ETC
performing the best. We note that we trained our models on a reasonable 16GB memory/chip with
batch size of 32-64. Our memory efficiency is due to efficient blocking and sparsity structure of the
sparse attention mechanism described in Sec. 2.

Question Answering (QA) We considered following four challenging datasets:

1. Natural Questions [52]: For the given question, find a short span of answer (SA) from the given
evidences as well highlight the paragraph from the given evidences containing information about
the correct answer (LA).

2. HotpotQA-distractor [100]: Similar to natural questions, it requires finding the answer (Ans) as
well as the supporting facts (Sup) over different documents needed for multi-hop reasoning from
the given evidences.

3. TriviaQA-wiki [41]: We need to provide an answer for the given question using provided
Wikipedia evidence, however, the answer might not be present in the given evidence. On a

1code available at http://goo.gle/bigbird-transformer
2https://github.com/pytorch/fairseq/tree/master/examples/roberta
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smaller verified subset of question, the given evidence is guaranteed to contain the answer.
Nevertheless, we model the answer as span selection problem in this case as well.

4. WikiHop [95]: Chose correct option from multiple-choice questions (MCQ), by aggregating
information spread across multiple documents given in the evidences.

As these tasks are very competitive, multiple highly engineered systems have been designed specific
each dataset confirming to respective output formats. For a fair comparison, we had to use some
additional regularization for training BIGBIRD, details of which are provided in App. E.2 along
with exact architecture description. We experiment using the base sized model and select the best
configuration on the development set for each dataset (as reported in Tab. 2). We can see that
BIGBIRD-ETC, with expanded global tokens consistently outperforms all other models. Thus, we
chose this configuration to train a large sized model to be used for evaluation on the hidden test set.

In Tab. 3, we compare BIGBIRD-ETC model to top-3 entries from the leaderboard excluding BIGBIRD.
One can clearly see the importance of using longer context as both Longformer and BIGBIRD
outperform models with smaller contexts. Also, it is worth noting that BIGBIRD submission is a
single model, whereas the other top-3 entries for Natural Questions are ensembles, which might
explain the slightly lower accuracy in exact answer phrase selection.

Classification We experiment on datasets of different lengths and contents, specifically various
document classification and GLUE tasks. Following BERT, we used one layer with cross entropy
loss on top of the first [CLS] token. We see that gains of using BIGBIRD are more significant
when we have longer documents and fewer training examples. For instance, using base sized model,
BIGBIRD improves state-of-the-art for Arxiv dataset by about 5% points. On Patents dataset, there
is improvement over using simple BERT/RoBERTa, but given the large size of training data the
improvement over SoTA (which is not BERT based) is not significant. Note that this performance
gain is not seen for much smaller IMDb dataset. Along with experimental setup detail, we present
detailed results in App. E.4 which show competitive performance.

4.1 Encoder-Decoder Tasks

For an encoder-decoder setup, one can easily see that both suffer from quadratic complexity due to
the full self attention. We focus on introducing the sparse attention mechanism of BIGBIRD only at
the encoder side. This is because, in practical generative applications, the length of output sequence
is typically small as compared to the input. For example for text summarization, we see in realistic
scenarios (c.f. App. E.5 Tab. 18) that the median output sequence length is ∼ 200 where as the input

Model
Arxiv PubMed BigPatent

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Pr
io

rA
rt

SumBasic [68] 29.47 6.95 26.30 37.15 11.36 33.43 27.44 7.08 23.66
LexRank [25] 33.85 10.73 28.99 39.19 13.89 34.59 35.57 10.47 29.03
LSA [97] 29.91 7.42 25.67 33.89 9.93 29.70 - - -
Attn-Seq2Seq [85] 29.30 6.00 25.56 31.55 8.52 27.38 28.74 7.87 24.66
Pntr-Gen-Seq2Seq [77] 32.06 9.04 25.16 35.86 10.22 29.69 33.14 11.63 28.55
Long-Doc-Seq2Seq [20] 35.80 11.05 31.80 38.93 15.37 35.21 - - -
Sent-CLF [81] 34.01 8.71 30.41 45.01 19.91 41.16 36.20 10.99 31.83
Sent-PTR [81] 42.32 15.63 38.06 43.30 17.92 39.47 34.21 10.78 30.07
Extr-Abst-TLM [81] 41.62 14.69 38.03 42.13 16.27 39.21 38.65 12.31 34.09
Dancer [31] 42.70 16.54 38.44 44.09 17.69 40.27 - - -

B
as

e

Transformer 28.52 6.70 25.58 31.71 8.32 29.42 39.66 20.94 31.20
+ RoBERTa [76] 31.98 8.13 29.53 35.77 13.85 33.32 41.11 22.10 32.58
+ Pegasus [107] 34.81 10.16 30.14 39.98 15.15 35.89 43.55 20.43 31.80

BIGBIRD-RoBERTa 41.22 16.43 36.96 43.70 19.32 39.99 55.69 37.27 45.56

L
ar

ge

Pegasus (Reported) [107] 44.21 16.95 38.83 45.97 20.15 41.34 52.29 33.08 41.75
Pegasus (Re-eval) 43.85 16.83 39.17 44.53 19.30 40.70 52.25 33.04 41.80
BIGBIRD-Pegasus 46.63 19.02 41.77 46.32 20.65 42.33 60.64 42.46 50.01

Table 4: Summarization ROUGE score for long documents.
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sequence’s median length is > 3000. For such applications, it is more efficient to use sparse attention
mechanism for the encoder and full self-attention for the decoder.

Summarization Document summarization is a task of creating a short and accurate summary of
a text document. We used three long document datasets for testing our model details of which are
mention in Tab. 18. In this paper we focus on abstractive summarization of long documents where
using a longer contextual encoder should improve performance. The reasons are two fold: First, the
salient content can be evenly distributed in the long document, not just in first 512 tokens, and this
is by design in the BigPatents dataset [78]. Second, longer documents exhibit a richer discourse
structure and summaries are considerably more abstractive, thereby observing more context helps.
As has been pointed out recently [76, 107], pretraining helps in generative tasks, we warm start
from our general purpose MLM pretraining on base-sized models as well as utilizing state-of-the-art
summarization specific pretraining from Pegasus [107] on large-sized models. The results of training
BIGBIRD sparse encoder along with full decoder on these long document datasets are presented
in Tab. 4. We can clearly see modeling longer context brings significant improvement. Along with
hyperparameters, we also present results on shorter but more widespread datasets in App. E.5, which
show that using sparse attention does not hamper performance either.

5 Experiments: Genomics

There has been a recent upsurge in using deep learning for genomics data [86, 106, 13], which has
resulted in improved performance on several biologically-significant tasks such as promoter site
prediction [71], methylation analysis [55], predicting functional effects of non-coding variant [109],
etc. These approaches consume DNA sequence fragments as inputs, and therefore we believe longer
input sequence handling capability of BIGBIRD would be beneficial as many functional effects
in DNA are highly non-local [12]. Furthermore, taking inspiration from NLP, we learn powerful
contextual representations for DNA fragments utilizing abundant unlabeled data (e.g. human reference
genome, Saccharomyces Genome Database) via MLM pretraining. Next, we showcase that our long
input BIGBIRD along with the proposed pretraining significantly improves performances in two
downstream tasks. Detailed experimental setup for the two tasks are provided in App. F.

Model BPC

SRILM [58] 1.57
BERT (sqln. 512) 1.23

BIGBIRD (sqln. 4096) 1.12

Table 5: MLM BPC

Pre-training and MLM As explored in Liang [58], instead of oper-
ating on base pairs, we propose to first segment DNA into tokens so
as to further increase the context length (App. F, Fig. 7). In particular,
we build a byte-pair encoding [50] table for the DNA sequence of size
32K, with each token representing 8.78 base pairs on average. We
learn contextual representation of these token on the human reference
genome (GRCh37)3 using MLM objective. We then report the bits
per character (BPC) on a held-out set in Tab. 5. We find that attention
based contextual representation of DNA does improve BPC, which is further improved by using
longer context.

Model F1

CNNProm [90] 69.7
DeePromoter [71] 95.6

BIGBIRD 99.9

Table 6: Comparison.

Promoter Region Prediction Promoter is a DNA region typically lo-
cated upstream of the gene, which is the site of transcription initiation.
Multiple methods have been proposed to identify the promoter regions in
a given DNA sequence [99, 59, 11, 98, 71], as it is an important first step
in understanding gene regulation. The corresponding machine learning
task is to classify a given DNA fragment as promoter or non-promoter
sequence. We use the dataset compiled by Oubounyt et al. [71] which was
built from Eukaryotic Promoter Database (EPDnew) [24] 4. We finetuned
the pretrained BIGBIRD model from above, using the training data and report F1 on test dataset. We
compare our results to the previously reported best method in Tab. 6. We see that BIGBIRD achieve
nearly perfect accuracy with a 5% jump from the previous best reported accuracy.

3https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
4https://epd.epfl.ch/human/human_database.php?db=human
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Model TF HM DHS

gkm-SVM [30] 89.6 - -
DeepSea [109] 95.8 85.6 92.3

BIGBIRD 96.1 88.7 92.1

Table 7: Chromatin-Profile Prediction

Chromatin-Profile Prediction Non-coding regions of
DNA do not code for proteins. Majority of diseases and
other trait associated single-nucleotide polymorphism are
correlated to non-coding genomic variations [109, 46].
Thus, understanding the functional effects of non-coding
regions of DNA is a very important task. An important
step in this process, as defined by Zhou and Troyanskaya
[109], is to predict large-scale chromatin-profiling from
non-coding genomic sequence. To this effect, DeepSea [109], compiled 919 chromatin-profile of 2.4M
non-coding variants from Encyclopedia of DNA Elements (ENCODE)5 and Roadmap Epigenomics
projects6. The corresponding ML task is to predict, for a given non-coding region of DNA, these
919 chromatin-profile including 690 transcription factors (TF) binding profiles for 160 different TFs,
125 DNase I sensitivity (DHS) profiles and 104 histone-mark (HM) profiles. We jointly learn 919
binary classifiers to predict these functional effects from sequence of DNA fragments. On held-out
chromosomes, we compare AUC with the baselines in Tab. 7 and see that we significantly improve
on performance on the harder task HM, which is known to have longer-range correlations [27] than
others.

6 Conclusion

We propose BIGBIRD: a sparse attention mechanism that is linear in the number of tokens. BIGBIRD
satisfies a number of theoretical results: it is a universal approximator of sequence to sequence
functions and is also Turing complete. Theoretically, we use the power of extra global tokens preserve
the expressive powers of the model. We complement these results by showing that moving to sparse
attention mechanism do incur a cost. Empirically, BIGBIRD gives state-of-the-art performance on
a number of NLP tasks such as question answering and long document classification. We further
introduce attention based contextual language model for DNA and fine-tune it for down stream tasks
such as promoter region prediction and predicting effects of non-coding variants.
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geneous erdős–rényi graphs. Annals of Probability, 47(3):1653–1676, 2019.

[10] F. Benaych-Georges, C. Bordenave, A. Knowles, et al. Spectral radii of sparse random
matrices. In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, volume 56,
pages 2141–2161. Institut Henri Poincaré, 2020.

[11] R. Bharanikumar, K. A. R. Premkumar, and A. Palaniappan. Promoterpredict: sequence-based
modelling of escherichia coli σ70 promoter strength yields logarithmic dependence between
promoter strength and sequence. PeerJ, 6:e5862, 2018.

[12] S. Buldyrev, A. Goldberger, S. Havlin, R. Mantegna, M. Matsa, C.-K. Peng, M. Simons,
and H. Stanley. Long-range correlation properties of coding and noncoding dna sequences:
Genbank analysis. Physical Review E, 51(5):5084, 1995.

[13] A. Busia, G. E. Dahl, C. Fannjiang, D. H. Alexander, E. Dorfman, R. Poplin, C. Y. McLean,
P.-C. Chang, and M. DePristo. A deep learning approach to pattern recognition for short dna
sequences. BioRxiv, page 353474, 2019.

[14] J. Chen, S.-t. Lin, and G. Durrett. Multi-hop question answering via reasoning chains. arXiv
preprint arXiv:1910.02610, 2019.

[15] Y.-C. Chen, Z. Gan, Y. Cheng, J. Liu, and J. Liu. Distilling the knowledge of bert for text
generation. arXiv preprint arXiv:1911.03829, 2019.

[16] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

[17] F. Chung and L. Lu. The average distances in random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002.

[18] C. Clark and M. Gardner. Simple and effective multi-paragraph reading comprehension. arXiv
preprint arXiv:1710.10723, 2017.

[19] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does bert look at? an analysis of
bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

[20] A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang, and N. Goharian. A
discourse-aware attention model for abstractive summarization of long documents. arXiv
preprint arXiv:1804.05685, 2018.

[21] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context. arXiv:1901.02860, 2019.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[23] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.-W. Hon.
Unified language model pre-training for natural language understanding and generation. In
Advances in Neural Information Processing Systems, pages 13042–13054, 2019.

[24] R. Dreos, G. Ambrosini, R. Cavin Périer, and P. Bucher. Epd and epdnew, high-quality
promoter resources in the next-generation sequencing era. Nucleic acids research, 41(D1):
D157–D164, 2013.

[25] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence research, 22:457–479, 2004.

[26] Y. Fang, S. Sun, Z. Gan, R. Pillai, S. Wang, and J. Liu. Hierarchical graph network for
multi-hop question answering. arXiv preprint arXiv:1911.03631, 2019.

[27] L. A. Gates, C. E. Foulds, and B. W. O’Malley. Histone marks in the ‘driver’s seat’: functional
roles in steering the transcription cycle. Trends in biochemical sciences, 42(12):977–989,
2017.

11



[28] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence
to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

[29] S. Gehrmann, Y. Deng, and A. M. Rush. Bottom-up abstractive summarization. arXiv preprint
arXiv:1808.10792, 2018.

[30] M. Ghandi, D. Lee, M. Mohammad-Noori, and M. A. Beer. Enhanced regulatory sequence
prediction using gapped k-mer features. PLoS computational biology, 10(7), 2014.

[31] A. Gidiotis and G. Tsoumakas. A divide-and-conquer approach to the summarization of
academic articles. arXiv preprint arXiv:2004.06190, 2020.

[32] M. Gong. ReflectionNet, 2020 (accessed June 3, 2020). URL https://www.microsoft.
com/en-us/research/people/migon/.

[33] S. Gray, A. Radford, and D. P. Kingma. Gpu kernels for block-sparse weights. arXiv preprint
arXiv:1711.09224, 3, 2017.

[34] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. Realm: Retrieval-augmented language
model pre-training. arXiv preprint arXiv:2002.08909, 2020.

[35] J. He, L. Wang, L. Liu, J. Feng, and H. Wu. Long document classification from local word
glimpses via recurrent attention learning. IEEE Access, 7:40707–40718, 2019.

[36] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blun-
som. Teaching machines to read and comprehend. In Advances in neural information
processing systems, pages 1693–1701, 2015.

[37] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[38] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin of the
American Mathematical Society, 43(4):439–561, 2006.

[39] G. Izacard and E. Grave. Leveraging passage retrieval with generative models for open domain
question answering. arXiv preprint arXiv:2007.01282, 2020.

[40] Y. Jiang, J. Petrak, X. Song, K. Bontcheva, and D. Maynard. Team bertha von suttner
at semeval-2019 task 4: Hyperpartisan news detection using elmo sentence representation
convolutional network. In Proceedings of the 13th International Workshop on Semantic
Evaluation, pages 840–844, 2019.

[41] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. Triviaqa: A large scale distantly supervised
challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Vancouver, Canada, July 2017. Association for
Computational Linguistics.

[42] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. Spanbert: Improv-
ing pre-training by representing and predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77, 2020.

[43] E. Katzav, O. Biham, and A. K. Hartmann. Distribution of shortest path lengths in subcritical
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Big Bird: Transformers for Longer Sequences – Appendix

A Universal Approximators

A.1 Notation

We begin by setting up some notations following Pérez et al. [72] to formally describe the complete
architecture of Transformers. A single layer of Transformer encoder is a parametric function Enc
receiving a sequence X = (x1, ...,xn) of vectors in Rd and returning a sequence Z = (z1, ...,zn)
of the same length. Each zi is a d dimensional vector as well. We interchangeably treat the sequence
X as a matrix in Rn×d. Enc has two components:

1. An attention mechanism ATTN that takes in the sequence X and returns sequence (a1, ...,an)
of the same length and dimensionality; and

2. A two layer fully connected network O that takes in a vector in Rd and returns a vector in Rd.

Then i-th output vector of Enc(X) is computed as follows:

zi = O(ai) + ai where ai = ATTN(X)i + xi (1)

Now it remains to define ATTN and O which we do next.

As described in Sec. 2, an attention mechanism is parameterized by three functions: Q,K, V :
Rd → Rm. In this paper, we assume that they are simply matrix products: Q(x) = xWQ, K(x) =
xWK , and V (x) = xWV , where WQ,WK ,WV ∈ Rd×m and WV ∈ Rd×d. In reality a multi-
headed attention is used, i.e. we have not only one, but H-sets of Query/Key/Value weight matrices,
Wh
Q,W

h
V ,W

h
K for h = 1, ...,H . Thus, for a directed graph D over [n], the ith output vector of the

generalized attention mechanism would be

ATTND(X)i =

H∑
h=1

σ
(
(xiW

h
Q)(XN(i)W

h
K)T

)
· (XN(i)W

h
V ) (AT)

where N(i) denote the out-neighbors set of node i in D. In other words, the set of arcs (directed
edges) in D represents the set of inner products that our attention mechanism will consider. Also
recall that σ is a scoring function such as softmax or hardmax.

Lastly, we define the output fully connected network as follows:

O(ai) = ReLU (aiW1 + b1)W2 ·+b2 (FF)

Here W1 ∈ Rd×q , W2 ∈ Rq×d, b1 ∈ Rp, and b2 ∈ Rd are parameters of output network O.

Additional Notation We introduce a few pieces of additional notation that will be useful. Let
[a, b)δ = {a, a+ δ, . . . , a+ b b−aδ c · δ}. Therefore, [0, 1)δ = {0, δ, 2δ, . . . , (1− δ)}. We use 1[E ] to
denote the indicator variable; it is 1 if the event E occurs and 0 otherwise.

A.2 Proof

In this section, we will present the full proof of theorem 1. The proof will contain three parts. The
first and the third part will largely follow standard techniques. The main innovation lies is in the
second part.

A.2.1 Approximate FCD by piece-wise constant functions

First, we consider a suitable partition of the region (0, 1) into a grid of granularity δ, which we denote
by Gδ . We do this using Lemma 8 from Yun et al. [104], which we restate for completeness:
Lemma 1 (Lemma 8 [104]). For any given f ∈ FCD and 1 ≤ p ≤ ∞, there exists a δ > 0 such that
there exists a piece-wise constant function f̄ with dp(f, f̄) ≤ ε

3 . Concretely, f̄ is defined as

f̄(X) =
∑
P∈Gδ

f(P ) · 1 [‖ReLU(X − P )‖∞ ≤ δ]
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Since transformers can learn a positional embedding E, without any loss of generality, we can
consider the translated function. In particular, define

E =


0 0 0 . . . 0
δ−d δ−d δ−d . . . δ−d

δ−2d δ−2d δ−2d . . . δ−2d

...
δ−(n−1)d δ−(n−1)d δ−(n−1)d . . . δ−(n−1)d


We will try to approximate g(X) = f(X−E) where g is defined on the domain [0, 1]d× [δ−d, δ−d+
1]d × · · · × [δ−(n−1)d, δ−(n−1)d + 1]d. To do so, we will apply a suitable modification of Lemma 1,
which will consider the discretized grid

GE
δ := [0, 1]dδ × [δ−d, δ−d + 1]dδ × · · · × [δ−(n−1)d, δ−(n−1)d + 1]dδ .

Therefore, it suffices to approximate a function f̄ : GE
δ → Rn×d defined as

f̄(X) =
∑
P∈GE

δ

f(P − E) · 1 [‖ReLU(X − P )‖∞ ≤ δ] .

A.2.2 Contextual Mappings and Sparse Attention Mechanisms

Throughout this section, we will assume that we are given a function that has an extra global token at
index 0 and all vectors have an extra dimension appended to them. The latter assumption is without
loss of generality as we can use the Feed-Forward Network to append sparse dimensions. In particular,
we will associate X ∈ R(n+1)×(d+1) where we write X = (x0, x1, . . . , xn). Although our function
is only defined for GE

δ ⊂ Rn×d, we can amend the function in a natural way by making it ignore the
first column. To avoid excessive clutter, we will assume that the function value is evaluated on the
last n columns.

The main idea in this section is the use of contextual mapping to enable Transformers to compute
any discretized function. A contextual mapping is an unique encoding of each tuple (X,xi) where
X ∈ GE

δ , and each column xi ∈ [δ−(i−1)d, δ−(i−1)d + 1)dδ for all i ∈ [n]. We restate the definition
adapted to our setting below
Definition 2 (Defn 3.1 [104]). (Contextual Mapping) A contextual mapping is a function mapping
q : GE

δ → Rn if it satisfies the following:

1. For any P ∈ GE
δ , q(P ) contains distinct entries.

2. For any two P, P ′ ∈ GE
δ with P 6= P ′, all entries of q(P ) and q(P ′) are distinct.

The key technical novelty of the proof is computing a contextual mapping using only the sparse
attention mechanism. We create a “selective shift” operator which only shifts entries of a vector that
lie in a certain range. We will use this shift operator strategically to ensure that we attain a contextual
mapping at the end of the process. The lemma below, which is based on parts of the proof of Lemma
6 of [104], states that we can implement a suitable “selective” shift operator using a sparse attention
mechanism.
Lemma 2. Given a function ψ : R(n+1)×(d+1) × R2 → R(n+1)×1 and a vector u ∈ Rd+1 and
a sparse attention mechanism based on the directed graph D, we can implement a selective shift
operator that receives as input a matrix X ∈ R(n+1)×(d+1) and outputs X + ρ ·ψu(X, b1, b2) where

ψu(Z; b1, b2)i =

{
(maxj∈N(i) u

TZj −minj∈N(i) u
TZj)e1 if b1 ≤ uTZj ≤ b2

0 else.

Note that e1 ∈ Rd+1 denotes (1, 0, . . . , 0).

Proof. Consider the function , which can be implemented by a sparse attention mechanism :

ψ̃(X, b)i = σH

[
(uT ·Xi)

T · (uTXN(i) − b1TN(i))e
(1)(uTXN(i))

]
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This is because the Key, Query and Value functions are simply affine transformations of X .

Given any graph D, the above function will evaluate to the following:

ψ̃(Z; b)i =

{
(maxj∈N(i) u

TZj)e1 if uTZj > b

(minj∈N(i) u
TZj)e1 if uTZj < b

Therefore we can say that ψ̃(Z; bQ)− ψ̃(Z; bQ′) satisfies

ψ(Z; b1, b2)i =

{
(maxj∈N(i) u

TZj −minj∈N(i) u
TZj)e1 if b1 ≤ uTZj ≤ b2

0 else

The following lemma, which is the heart of the proof, uses the above selective shift operators to
construct contextual mappings.
Lemma 3. There exists a function gc : R(n+1)×(d+1) → R(n+1) and a unique vector u, such that
for all P ∈ GE

δ gc(P ) := 〈u, g(P )〉 satisfies the property that gc is a contextual mapping of P .
Furthermore, gc ∈ T 2,1,1

D using a composition of sparse attention layers as long as D contains the
star graph.

Proof. Define u ∈ Rd+1 = [1, δ−1, δ−2, . . . , δ−d+1, δ−nd] and let X0 = (0, . . . , 0, 1). We will
assume that 〈xi, x0〉 = 0, by assuming that all the columns x1, . . . , xn are appended by 0.

To successfully encode the entire context in each token, we will interleave the shift operator to target
the original columns 1, . . . , n and to target the global column 0. After a column i is targeted, its inner
product with u will encode the entire context of the first i columns. Next, we will shift the global
token to take this context into account. This can be subsequently used by the remaining columns.

For i ∈ {0, 1, . . . , n}, we will use li to denote the innerproducts 〈u, xi〉 at the beginning. For
fi = 〈u, xi〉 after the ith column has changed for i ∈ {1, . . . , n} and we will use fk0 to denote 〈u, x0〉
after the kth phase. We need to distinguish the global token further as it’s inner product will change
in each phase. Initially, given X ∈ GE

δ , the following are true:

δ−(i−1)d ≤ 〈u,Xi〉 ≤ δ−id − δ for all i ∈ [n]

δ−(n+1)d = 〈u,X0〉
Note that all li ordered in distinct buckets l1 < l2 < · · · < ln < l0.

We do this in phases indexed from i ∈ {1, . . . , n}. Each phase consists of two distinct parts:
The low shift operation: These operation will be of the form

X ← X + δ−dψ (X, v − δ/2, v + δ/2)

for values v ∈ [δ−id), δ−(i+1)d)δ. The range is chosen so that only li will be in the range and no
other lj j 6= i is in the range. This will shift exactly the ith column xi so that the new inner product
fi = 〈u, xi〉 is substantially larger than li. Furthermore, no other column of X will be affected.
The high shift operation: These operation will be of the form

X ← X + δ−nd · ψ (X, v − δ/2, v + δ/2)

for values v ∈ [Si, Ti)δ . The range [Si, Ti)δ is chosen to only affect the column x0 (corresponding to
the global token) and no other column. In particular, this will shift the global token by a further δ−nd.
Let f̃ i0 denote the value of f̃ i0 = 〈u, x0〉 at the end of ith high operation.

Each phase interleaves a shift operation to column i and updates the global token. After each phase,
the updated ith column fi = 〈u, xi〉 will contain a unique token encoding the values of all the
l1, . . . , li. After the high update, f̃ i0 = 〈u, x0〉 will contain information about the first i tokens.

Finally, we define the following constants for all k ∈ {0, 1, . . . , n}.

Tk = (δ−(n+1)d + 1)k · δ−nd −
k∑
t=2

(δ−(n+1)d + 1)k−t(2δ−nd−d + δ−nd + 1)δ−td

− (δ−(n+1)d + 1)k−1(δ−nd−d + δ−nd)δ−d − δ−(k+1)d (UP)
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Sk = (δ−(n+1)d + 1)k · δ−nd −
k∑
t=2

(δ−(n+1)d + 1)k−t(2δ−nd−d + δ−nd + 1)δ−(t−1)d

− (δ−(n+1)d + 1)k−1(δ−nd−d + δ−nd)− δ−kd (LP)

After each k phases, we will maintain the following invariants:

1. Sk < f̃k0 < Tk for all k ∈ {0, 1, . . . , n}.

2. Tk−1 ≤ fk < Sk

3. The order of the inner products after kth phase is

lk+1 < lk+2 · · · < ln < f1 < f2 < · · · < fk < f̃k0 .

Base case The case k = 0, is trivial as we simply set S0 = δ−(n+1)d, T0 = δ−(n+1)·d + δ.

The first nontrivial case is k = 1.

Inductive Step First, in the low shift operation is performed in the range [δ−(k−1)d, δ−kd)δ Due to
the invariant, we know that there exists only one column xk that is affected by this shift. In particular,
for column k, we will have maxj∈N(k) 〈u, xj〉 = 〈u, x0〉 = f̃k−1

0 . The minimum is lk. Thus the
update will be fk = δ−d(f̃k−1

0 − lk) + lk. Observe that for small enough δ, fk ≥ f̃k−1
0 . Hence the

total ordering, after this operation is

lk + 1 < lk+2 · · · < ln < f1 < f2 < · · · < f̃k−1
0 < fk (2)

Now when we operate a higher selective shift operator in the range [Sk−1, Tk−1)δ . Since only global
token’s innerproduct f̃k−1

0 is in this range, it will be the only column affected by the shift operator.
The global token operates over the entire range, we know from Eq. (2) that, fk = maxi∈[n] 〈u, xi〉
and lk+1 = mini∈[n] 〈u, xi〉. The new value f̃k0 = δ−nd · (fk − lk+1) + f̃k−1

0 . Expanding and
simplifying we get,

f̃k0 = δ−nd · (fk − lk+1) + f̃k−1
0

= δ−nd · (δ−d(f̃k−1
0 − lk) + lk − lk+1) + f̃k−1

0

= δ−(n+1)d · (f̃k−1
0 − lk) + δ−nd(lk − lk+1) + f̃k−1

0

= (δ−(n+1)d + 1)f̃k−1
0 − (δ−nd−d + δ−nd)lk − lk+1

Expanding the above recursively, we get

= (δ−(n+1)d + 1)k · f̃0
0 −

k∑
t=2

(δ−(n+1)d + 1)k−t(2δ−nd−d + δ−nd + 1)lt

− (δ−(n+1)d + 1)k−1(δ−nd−d + δ−nd)l1 − lk+1

Since we know that f̃0
0 = δ−nd and each li < δ−id, we can substitute this to get Eq. (UP) and we

can get an lower-bound Eq. (LP) by using li ≥ δ−(i−1)d.

By construction, we know that Sk ≤ f̃k0 < Tk. For sufficiently small δ, observe that Sk ≤ f̃k0 < Tk
all are essentially the dominant term ≈ O(δ−n(k+1)d−kd) and all the lower order terms do not matter.
As a result it is immediate to see that that fk > δ−d(f̃k−1

0 − lk) > Tk−1 and hence we can see that
the invariant 2 is also satisfied. Since only column k and the global token are affected, we can see
that invariant 3 is also satisfied.

After n iterations, f̃n0 contains a unique encoding for any P ∈ GE
δ . To ensure that all tokens are

distinct, we will add an additional layerX = X+δ−n
2dψ(X, v−δ/2, v+δ/2) for all v ∈ [S1, Tn)δ .

This ensures that for all P, P ′ ∈ GE
δ , each entry of q(P ) and q(P ′) are distinct.
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The previous lemma shows that we can compute a contextual mapping using only sparse transforms.
We now use the following lemma to show that we can use a contextual mapping and feed-forward
layers to accurately map to the desired output of the function f̄ .
Lemma 4 (Lemma 7 [104]). Let gc be the function in Lemma 3, we can construct a function
gv : R(n+1)×(d+1) → R(n+1)×d composed ofO(nδ−nd) feed-forward layers (with hidden dimension
q = 1) with activations in Φ such that gv is defined as gv(Z) = [gtknv (Z1), . . . , gtknv (Zn)], where for
all j ∈ {1, . . . , n},

gtknv (gc(L)j) = f(L)j

A.2.3 Approximating modified Transformers by Transformers

The previous section assumed we used Transformers that used hardmax operator σH and activations
functions belonging to the set Φ. This is without loss of generality as following lemma shows.
Lemma 5 (Lemma 9 [104]). For each g ∈ T̄ 2,1,1 and 1 ≤ p ≤ ∞, ∃g ∈ T 2,1,4 such that
dp(g, ḡ) ≤ ε/3

Combining the above lemma with the Lemma 3, we get our main result:

Theorem 2. Let 1 ≤ p ≤ ∞ and ε > 0, there exists a transformer network g ∈ T 2,1,4
D which

achieves a ratio of dp(f, g) ≤ ε where D is the sparse graph.

Since the sparsity graph associated with BIGBIRD contains a star network, we know that it can
express any continuous function from a compact domain.

Contemporary work on Universal Approximability of Sparse Transformers We would like to
note that, contemporary work done by Yun et al. [105], also parallelly explored the ability of sparse
transformers with linear connections to capture sequence-to-sequence functions on the compact
domain.
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B Turing Completeness

In this section, we will extend our results to the setting of Pérez et al. [72]. Our exposition will largely
use their proof structure but we will make a few changes. We repeat some of the lemmas with the
amendments to make the exposition self-contained.

B.1 Notation

Transformer Decoder We need both an encoder and a decoder in the transformer for simulating a
Turing machine. We utilize the same notation used in App. A.1 for encoders. The decoder is similar to
an encoder but with additional attention to an external pair of key-value vectors (Ke ∈ Rn×m,V e ∈
Rn×d), which usually come from the encoder stack. A single layer of Transformer decoder is a
parametric function Dec receiving a sequence Yj = (y1, . . . ,yj) of vectors in Rd plus the external
(Ke,V e) and returning a sequence of vectors Zj = (z1, . . . ,zj) of the same length. Each zi is a d
dimensional vector as well. Dec has three components, one more than Enc:

1. An attention mechanism ATTN that takes in the sequence Yj and returns sequence (p1, ...,pj)
of the same length and dimensionality;

2. A cross-attention mechanism CROSSATTN that takes in the sequence (p1, ...,pj) plus the exter-
nal (Ke,V e) and returns sequence (a1, ...,aj), with each ai ∈ Rd; and

3. A two layer fully connected network O that takes in a vector in Rd and returns a vector in Rd.
Then i-th output vector of Dec(Yj ;K

e,V e) is computed as follows:
zi = O(ai) + ai (3)

where ai = CROSSATTN(pi,K
e,V e) + pi (4)

and pi = ATTND(Yj)i + yi (5)

ATTND and O are as defined in App. A.1 and it remains to define CROSSATTN. The ith output vector
of multi-head cross-attention attention is given by

CROSSATTN(Yj)i =

H∑
h=1

σ
(

(yiW
h
Q)(K(e)Wh

K)T
)
· (V (e)Wh

V ) (6)

where Wh
Q,W

h
K ,W

h
V ∈ Rd×m, Wh

V ∈ Rd×d, for all h = 1, . . . H heads.

Turning Machine We will use the same setup of Turning Machine that was used by Pérez et al. [72]
(see section B.4). Given a Turing Machine M = (Q,Σ, δ, qinit, F ), we use the following notation

q(j) : state of Turing machine M at time j.

s(j) : symbol under the head of M at time j.

v(j) : symbol written by M at time j.

m(j) : head direction in the transition of M at time j.

Vector representations For a symbol s ∈ Σ, J s K denotes its one-hot vector representation in Q|Σ|.
All the transformer intermediate vectors used in our simulations have dimension d = 2|Q|+4|Σ|+16.
Note that we use five extra dimension as compared to Pérez et al. [72]. We follow the convention
used in Pérez et al. [72] and write a a vector v ∈ Qd arranged in four groups of values as follows

v = [ q1, s1, x1,
q2, s2, x2, x3, x4, x5, x6,
s3, x7, s4,
x8, x9, x10, x11, x12, x13, x14, x15, x16 ]

where qi ∈ Q|Q|, si ∈ Q|Σ|, and xi ∈ Q.

B.2 Details of the Simulation

In this section, we give more details on the architecture of the encoder and decoder needed to
implement our simulation strategy.
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High Level Overview: Given the Turing machine M , we will show that a transformer with an
appropriate encoder and decoder TD can simulate each step ofM ’s execution. Our simulation strategy
will mostly follow Pérez et al. [72], except we will use a sparse attention mechanism. The main idea
is to maintain the current Turing machine state q(j) and symbol under the head s(j) as part of the
decoder sequence Y for all time step j so that we can always simulate the corresponding Turing
machine transition δ(q(j), s(j)) = (q(j), v(j),m(j)). The key difference will rise in Lemma B.4 of
Pérez et al. [72], where full attention is used to select the appropriate symbol from tape history in
one step. To accomplish the same task with sparse attention, we will exploit the associative property
of max and break down the symbol selection over multiple steps. Thus, unlike Pérez et al. [72] one
decoding step of our sparse transformer TD does not correspond to one step of the Turing machine
M . In particular, we will have two type of steps: compute step corresponding to update of M ’s
state and intermediate steps corresponding to aggregating the max (which in turn is used for symbol
selection). Let i denote the step of TD and g(i) denote the step of M being simulated at step i of
the decoder. At each decoding step we want to maintain the current Turing machine state qg(i) and
symbol under the sg(i) in yi. For roughly O(

√
i) intermediate steps the state will remain the same,

while we aggregate information about relevant past output symbols through sparse attention. To
maintain the same state for intermediate steps, we introduce an extra switching layer (App. B.2.3).
Finally, at the next compute step we will make the transition to new state qg(i)+1, new head movement
mg(i), and new output symbol vg(i) to be written. Thereby we are able to completely simulate the
given Turing machine M . As a result, we can prove the following main theorem:

Theorem 3. There exists a sparse attention mechanism using O(n) inner products such that the
resulting class of Transformer Networks using this sparse attention mechanism is Turing Complete.

Encoder

As [72], we use the same trivial single layer encoder where resulting K(e) contains position embed-
ding and V (e) contains one-hot symbol representation.

Decoder

Sparse Self-Attention mechanism for Decoder In this section, we will consider a particular
instance of the sparse graph D at decoder. We define its edges to be given by the following relations:
∀j ∈ N+, 1 ≤ k ≤ j + 1,(

j(j + 1)

2
+ k,

k(k + 1)

2

)
and

(
j(j + 1)

2
+ k,

j(j + 1)

2
+ k

)
if k > 1 else

(
j(j + 1)

2
+ 1,

j(j + 1)

2

)
.

This graph can be seen as a special case of BIGBIRD where first type of edges are realizations
of random and second type of edges correspond to locality. Also note that this graph satisfies the
left-to-right constraint of decoder, i.e. no node attends to a node in the future.
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Figure 2: Mapping between transformer step and original Turing machine step.
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Embeddings and positional encodings Our construction needs a different positional encoding
posDec : N→ Qd for decoder:

posDec(i) = [ 0, . . . , 0,
0, . . . , 0,
0, . . . , 0,
1, g(i) + 1, 1

g(i)+1 ,
1

(g(i)+1)2 , h(i), 0, 0, 0, 0 ]

where g(i) =
⌊
−1+

√
1+8i

2

⌋
and h(i) = g(i+ 1)− g(i). Note that h(i) reduces to a binary indicator

variable 1
{
−1+

√
1+8i

2 =
⌊
−1+

√
1+8i

2

⌋}
.

Induction Setup

We next show how to construct the decoder layers to produce the sequence of outputs y1,y2, . . .,
where yi is given by:

yi = [ J qg(i) K, J sg(i) K, cg(i),
0, . . . , 0,
0s, 0, J w(i) K,
0, 0, 0, 0, 0, u

(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 ]

That is, at step i of our sparse decoder yi, it will contain the information about the state of the turing
machine M at time g(i), the symbol under the head of M at time g(i), and the current location of
head of M at time g(i). We also have a placeholder symbol w and placeholder scalars u1, u2, u3,
whose role will be clear from our construction.

We consider as the starting vector for the decoder the vector

y1 = [ J qinit K, J # K, 0,
0, . . . , 0,
0, . . . , 0,
0, . . . , 0 ]

We assume that the start head is at c(0) = 0, the initial state is q(0) = qinit, and s(0) = # as we
initialize from clean tape. We show the correctness of our construction by an inductive argument:
we describe the architecture piece by piece and at the same time will show for every r ≥ 0 , our
architecture constructs yr+1 from the previous vectors (y0, . . . ,yr).

Thus, assume that y1, . . . ,yr satisfy the properties stated above. Since we are using positional
encodings, the actual input for the first layer of the decoder is the sequence

y1 + posDec(1), y2 + posDec(2), . . . , yr + posDec(r).

We denote by yi the vector yi plus its positional encoding. Thus we have ∀ 1 ≤ i ≤ r that

yi = [ J qg(i) K, J sg(i) K, cg(i),
0, . . . , 0,
0s, 0, J w(i) K,
1, g(i) + 1, 1

g(i)+1 ,
1

(g(i)+1)2 , h(i), u
(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 ]

B.2.1 Layer 1: Simulate Transition Function

In this layer, we use the cross-attention between encoder and decoder to access the input string and a
feed-forward network to simulate the transition function of M . The first self attention in Eq. (5) is
not used in this layer and we just produce the identity. This identity function is achieved by setting all
queries, keys, values to be 0 everywhere plus the residual connection. Thus, we have p1

i = yi.

Since p1
i is of the form [ , . . . , , 1, g(i) + 1, , . . . , ], we know by Lemma B.1 of Pérez et al.

[72] that if we use p1
i to attend over the encoder we obtain

CROSSATTN(p1
i ,K

e,V e) = [ 0, . . . , 0,
0, . . . , 0,
J αg(i)+1 K, βg(i)+1,0s,
0, . . . , 0 ]
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where α and β are as defined in Eq. (21) of [72]. Thus in Eq. (4) we finally produce the vector a1
i

given by

a1
i = CROSSATTN(p1

i ,K
e,V e) + p1

i

= [ J qg(i) K, J sg(i) K, cg(i),
0, . . . , 0,
J αg(i)+1 K, βg(i)+1, J w(i) K,
1, g(i) + 1, 1

g(i)+1 ,
1

(g(i)+1)2 , h(i), u
(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 ]

(7)

As the final piece of the first decoder layer we use a functionO1(·) (Eq. (3)) that satisfies the following
lemma.
Lemma 6 (Lemma B.2 [72]). There exists a two-layer feed-forward network O1 : Qd → Qd such
that with input vector a1

i (Eq. (7)) produces as output

O1(a1
i ) = [ 0, . . . , 0,

J qg(i)+1 K, J vg(i) K,mg(i), 0, 0, 0, 0
0, . . . , 0,
0, . . . , 0 ]

That is, function O1(·) simulates transition δ(qg(i), sg(i)) to construct J qg(i)+1 K, J vg(i) K, and mg(i)

besides some other linear transformations.

Thus, finally the output of the first decoder layer is

z1
i = O1(a1

i ) + a1
i = [ J qg(i) K, J sg(i) K, cg(i),

J qg(i)+1 K, J vg(i) K,mg(i), 0, 0, 0, 0,
J αg(i)+1 K, βg(i)+1, J w(i) K,
1, g(i) + 1, 1

g(i)+1 ,
1

(g(i)+1)2 , h(i), u
(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 ]

B.2.2 Layer 2: Finding Head Node

In this layer, we only use the feed-forward network to evaluate the next location of the head. The
self-attention and cross-attention are set to be the identity function, so a2

i = p2
i = z1

i . Recall that
cg(i) is the cell to which M is pointing to at time g(i), and that it satisfies the following recursion
cg(i)+1 = cg(i) +mg(i), which can be expanded to see that that cg(i)+1 = m(0) +m(1) + · · ·+mg(i).
Its not difficult to see that a two layer network with non-linearity can compute cg(i)+1/(g(i) + 1) and
cg(i)/(g(i) + 1) from cg(i), mg(i), and 1/(g(i) + 1) using the relation cg(i)+1 = cg(i) + mg(i). At
the end of layer 2, we obtain

z2
i = O2(a2

i ) + a2
i = [ J qg(i) K, J sg(i) K, cg(i),

J qg(i)+1 K, J vg(i) K, cg(i)+1, 1
g(i)+1 ,

1
(g(i)+1)2 ,

cg(i)+1

g(i)+1 ,
cg(i)

g(i)+1 ,

J αg(i)+1 K, βg(i)+1, J w(i) K,
1, g(i) + 1, 1

g(i)+1 ,
1

(g(i)+1)2 , h(i), u
(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 ]

B.2.3 Layer 3: Distinguishing Node Type

This is an additional layer (not present in the work of [72]), where we propagate computations in our
sparse graph. In particular, we will use this layer to “compute” or accumulate state in intermediate
nodes. We make this clear below. The self-attention and cross-attention are all set to be the identity
function, so a3

i = p3
i = z2

i . In this layer, we only use the dense attention layers to select the newly
computed states or to continue with previous states. Using idea similar to Lemma B.6 of [72], we can
construct a dense network such that

O([x,y, z, b])) =

{
[0,0,0, 0] if b = 1,

[0, z − y,−z, 0] if b = 0.

The negatives are generated to offset results from skip connection. We utilize such network to switch
Turing machine state and position embedding for intermediate steps to the values received from
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previous time step and do nothing for compute nodes. We use h(i) as the flipping bit b. Thus, at end
of layer 3, we obtain

z3
i = O3(a3

i ) + a3
i = [ 0, . . . , 0,

J q̂(i) K, J v̂(i) K, ĉ(i), 1
g(i)+1 ,

1
(g(i)+1)2 ,

cg(i)+1

g(i)+1 , û
(i)
4 ,

J α̂(i) K, β̂(i),0s,

1, û
(i)
1 , û

(i)
2 , û

(i)
3 , h(i), 0, 0, 0, 0 ]

where we used h(i) for selecting old states. In particular,
• We copy the input state and head position as is for intermediate nodes. We do not need to

transition to next Turing machine states in these nodes.

q̂(i) =

{
qg(i)+1 if h(i) = 1

qg(i) if h(i) = 0
, v̂(i) =

{
vg(i) if h(i) = 1

w(i) if h(i) = 0
, ĉ(i) =

{
cg(i)+1 if h(i) = 1

cg(i) if h(i) = 0
.

• To preserve the symbol under the head for intermediate nodes, we copy the previous symbol
to α location and set β = g(i) + 1, as the symbol at α location will be copied as the symbol
under head for next transformer step by the final transformation layer if β = g(i) + 1. Thus, we
correctly preserve the previous symbol under head as Turing machine does not transition these
nodes. For compute nodes, things happen as usual.

α̂(i) =

{
αg(i)+1 if h(i) = 1

sg(i) if h(i) = 0
, β̂(i) =

{
βg(i)+1 if h(i) = 1

g(i) + 1 if h(i) = 0
.

• Finally for the intermediate nodes, we copy the position embedding corresponding to current
best symbol w, which is stored in u1, u2, u3. For compute node, we let the position embedding
correspond to current Turing machine step.

û
(i)
1 =

{
g(i) + 1 if h(i) = 1

u
(i)
1 if h(i) = 0

, û
(i)
2 =

{
1

(g(i)+1)
if h(i) = 1

u
(i)
2 if h(i) = 0

,

û
(i)
3 =

{
1

(g(i)+1)2
if h(i) = 1

u
(i)
3 if h(i) = 0

, û
(i)
4 =

{
cg(i)

g(i)+1
if h(i) = 1

u
(i)
4 if h(i) = 0

.

For further simplification note that g(i+ 1) = g(i) if h(i) = 0 else g(i) + 1 when h(i) = 1. With
this fact, we can conclude that q̂(i) = qg(i+1) and ĉ(i) = cg(i+1). Thus, we can write,

z3
i = [ 0, . . . , 0,

J qg(i+1) K, J v̂(i) K, cg(i+1), 1
g(i)+1 ,

1
(g(i)+1)2 ,

cg(i)+1

g(i)+1 , û
(i)
4 ,

J α̂(i) K, β̂(i),0s,

1, û
(i)
1 , û

(i)
2 , û

(i)
3 , h(i), 0, 0, 0, 0 ]

B.2.4 Layer 4: Finding next symbol on tape

To find the symbol on tape under next head position cg(i)+1, we try to find what was written last at the
location cg(i)+1. To facilitate this, following [72], we define `(j) to be the last time (previous to j) in
which M was pointing to position c(j), or it is j − 1 if this is the first time that M is pointing to c(j).
Recall j is the Turing machine step counter, which is different from sparse transformer step i. [72]
could utilize full attention mechanism to find v`(j+1) at one go, but we have to do it over multiple
steps owing to our sparse attention mechanism.

We use similar query, key, value functions as used for full attention by [72] ∀i:

Q4(z3
i ) = [ 0, . . . , 0

0, . . . , 0,
0, . . . , 0,

0, c
g(i)+1

g(i)+1 ,
1

g(i)+1 ,
1

3(g(i)+1)2 , 0, 0, 0, 0, 0 ]
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K4(z3
i ) = [ 0, . . . , 0

0, . . . , 0,
0, . . . , 0,

0, û
(i)
2 , û

(i)
4 , û

(i)
3 , 0, 0, 0, 0, 0 ]

V4(z3
i ) = [ 0, . . . , 0,

0, . . . , 0,
0s, 0, J v̂(i) K,
0, 0, 0, 0, 0, û

(i)
1 , û

(i)
2 , û

(i)
3 , û

(i)
4 ]

It is clear that the three functions are linear transformations and thus they can be defined by feed-
forward networks. Notice that the query vector is always formed using current time step position
embedding, whereas key and value vectors are formed using copied over entries for intermediate
nodes and using current entries only for compute node.

Pérez et al. [72] find the desired vl(j+1) as vm(j) using full attention, where

m(t) = arg min
m∈{0,...,t}

χjt = arg min
m∈{0,...,t}

|〈Q4(z3
j ),K4(z3

m)〉|

Note the minimization is only over Turing machine steps, i.e. over compute nodes in our case.
We show below that we can estimates m(j) by parts using sparse attention mechanism. The
main idea is just to notice that minimization problem minm∈{0,...,t} χ

j
t can be expressed as

min{· · ·min{min{χj0, χ
j
1}, χ

j
2}, ..., χ

j
t} by the associativity property.

By definition of our graph D, at every intermediate node i of the form j(j + 1)/2 + k, i.e. where
k > 0, g(i) = j and h(i) = 0, we will attend over node k(k + 1)/2 and best till now copied from
i− 1. The node k(k + 1)/2 is never an intermediate node as h(k(k + 1)/2) = 1 for all k and in fact
corresponds to Turing machine’s step k. This will help us select the key and value corresponding to
min between node k(k + 1)/2 and i− 1. In other words, at node i of the form j(j + 1)/2 + k we
would have evaluated m(k) and corresponding value selected:

w(j(j+1)/2+k+1) = v̂m(k−1)

and similarly for u’s. So after going through all the intermediate nodes, finally at the next compute
node, i.e. when k = j + 1, we will obtain the minimum value over all of 0, 1, ..., j. This implies at a
compute node will be able to recover `(g(i) + 1) and its corresponding value as shown in Lemma
B.4 of [72]. Then we have that p4

i is given by

p4
i = ATTND(Z3

i ) + z3
i

= [ 0, . . . , 0,

J qg(i+1) K, J v̂(i) K, cg(i+1), 0, c
g(i)+1

g(i)+1 , û
(i)
4 ,

J α̂(i) K, β̂(i), J w(i+1) K,
1, û

(i)
1 , û

(i)
2 , û

(i)
3 , h(i), u

(i+1)
1 , u

(i+1)
2 , u

(i+1)
3 , u

(i+1)
4 ]

(8)

The cross-attention and feed-forward network are set to be identity, so z4
i = a4

i = p4
i .

B.2.5 Final transformation

We finish our construction by using the final transformation function F (·) from the corresponding
lemma from Pérez et al. [72], with a slight modification.
Lemma 7 (Lemma B.5 [72]). There exists a function F : Qd → Qd defined by a feed-forward
network such that

F (z4
r ) = [ J qg(r+1) K, J sg(r+1)) K, cg(r+1),

0, . . . , 0,
0s, 0, J w(r+1) K,
0, 0, 0, 0, 0, u

(r+1)
1 , u

(r+1)
2 , u

(r+1)
3 , u

(r+1)
4 ]

= yr+1

The modification is to let w, u1, u2, u3 to pass through. This yields the desired input to transformer at
next time step for both intermediate and compute node, thereby concluding our induction.
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C Limitations

Finally, we show that sparse attention mechanisms can not universally replace dense attention
mechanisms, i.e. there is no free lunch. We demonstrate a natural task which can be solved by the
full attention mechanism in O(1)-layers. However, under standard complexity theoretic assumptions,
we show that this problem will require Ω̃(n)-layers for any sparse attention layers with Õ(n) edges
(not just BIGBIRD). (We use the standard notation Ω̃(n) to hide the dependence on poly-logarithmic
factors. )

We consider the simple problem of finding the furthest vector for each vector in the given sequence
of length n and dimension d ∈ Ω(log2 n). The assumption on the dimension is mild , as in many
situations the dimension d = 768 is actually comparable to the number of n.

Task 1. Given n unit vectors {u1, . . . , un}, each in Rd where d = Θ(log2 n), compute
f(u1, . . . , un)→ (u1∗ , . . . , un∗) where for a fixed j ∈ [n], we define j∗ = arg maxk ‖uk − uj‖22.

Finding vectors that are furthest apart boils down to minimizing inner product search in case of unit
vectors. For a full-attention mechanism with appropriate query and keys, this task is very easy as we
can evaluate all pair-wise inner products.

The impossibility for sparse-attention follows from hardness results stemming from Orthogonal
Vector Conjecture (OVC) [2, 1, 96, 7], which is a widely used assumption in fine-grained complexity.
Informally, it states that one cannot determine if the minimum inner product among n Boolean vectors
is 0 in subquadratic time.

Conjecture 1 (Orthogonal Vectors Conjecture). For every ε > 0, there is a c ≥ 1 such that given n
Boolean vectors in d dimension, cannot determine if there is a pair of orthogonal vectors in O(n2−ε)
time on instances with d ≥ c log n.

Using conjecture 1, we show a reduction to show that a transformer g ∈ T H=O(d),m=O(d),q=O(d)
D for

any sparse directed graph D which completes Task 1 must require a superlinear number of layers.

Proposition 2. There exists a single layer full-attention network g ∈ T H=1,m=2d,q=0 that can
evaluate Task 1, i.e. g(u1, ..., un) = [u1∗ , . . . , un∗ ], but for any sparse-attention network in
T H=O(d),m=O(d),q=O(d)
D with graph D having Õ(n) edges (i.e. inner product evaluations), would

require Ω̃(n1−o(1)) layers.

Proof. We will break this proof into two parts:

Part 1: The full attention mechanism can solve the problem in O(1) layer We begin by provid-
ing an explicit construction of a single layer full self-attention that can evaluate Task 1.

Step 1 We embed each ui in the input into R2d as follows:

xi := E(ui) = [ui; 0] (9)

Step 2 Construct query, key, value functions as follows:

Q([a; b]) = −a
K([a; b]) = a

V ([a; b]) = [0; a]

(10)

Then Attn(Q(xi),K(X), V (X) = [0;uarg maxj〈−ui,uj〉]. Then,

ai = Attn(Q(xi),K(X), V (X)) + xi = [ui;uarg maxj〈−ui,uj〉] = [ui;ui∗ ] (11)

Step 3 Let O(ai) = 0, then the output zi = [ui;ui∗ ] as desired.

To complete the argument, observe that it now only takes O(n) inner products to check if there is a
pair of orthogonal vectors as we need only compare 〈ui, ui∗〉.
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Part 2: Every Sparse Attention Mechanism will need Ω̃(n1−ε) layers We prove by contradiction
that it is impossible to solve Task 1 by any g ∈ T H=O(d),m=O(d),q=O(d)

D sparse-attention graph D
with Õ(n) edges.

Suppose we can solve Task 1 using a network g ∈ T H=O(d),m=O(d),q=O(d)
D that has l layers. Recall

that all the computation we do in one layer is:

ai = ATTND(Q(xi),K(XN(i)), V (XN(i)) + xi

xi = O(ai) + ai
(12)

where AttnD is defined in eq. (AT).

Thus, total computation per layer is Õ(nd3) and consequently Õ(nld3) for the whole network
consisting of l layers.

We can use the result of Task 1 to solve the orthogonal vector (OV) problem (defined in Conjecture 1)
in linear time. So in total, we will be able to solve any instance of OV in Õ(nld3) time.

Now if l = O(n1−ε) for any ε > 0 and d = Θ(log2 n), then it appears that we are able to solve OV
in Õ(n2−ε) which contradicts Conjecture 1. Therefore, we need at least Ω̃(n1−o(1)) layers.
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D Implementation details

We optimize the code for modern hardware. Hardware accelerators like GPUs and TPUs truly shine
on coalesced memory operations which load blocks of contiguous bytes at once. Thus, its not very
efficient to have small sporadic look-ups caused by a sliding window or random element queries. We
alleviate this by “blockifying” the lookups.

GPU/TPU and Sparsity Ideally, if the adjacency matrix A described in Sec. 2 is sparse, one would
hope this would be sufficient to speed up the implementation. Unfortunately, it is well known [33, 102],
that such sparse multiplications cannot be efficiently implemented in GPUs. GPUs have thousands
of cores performing operations in parallel. Thus, we cannot efficiently perform the sparse matrix
multiplication mentioned in section Sec. 2.

As a result we propose to first blockify the attention pattern i.e. we pack sets of query and keys
together and then define attention on these blocks. It is easier to explain this process using the example
shown in Fig. 3. Suppose, there are 12 query and 12 key vectors to attend to. Using a block size
of 2, we split the query matrix into 12/2 = 6 blocks and similarly the key matrix into 12/2 = 6
blocks. Then the three different building components of BIGBIRD are defined on the block matrix. In
particular the three different components are:

1. Random attention: Each query block attends to r random key blocks. In Fig. 3a, r = 1 with
block size 2. This implies that each query block of size 2 randomly attends to a key block of
size 2.

2. Window local attention: While creating the block, we ensure that the number of query blocks
and the number of key blocks are the same. This helps us in defining the block window
attention. Every query block with index j attends to key block with index j − (w − 1)/2 to
j + (w − 1)/2, including key block j. In Fig. 3b, w = 3 with block size 2. It means that
each query block j (size 2 queries) attends to key block j − 1, j, j + 1.

3. Global attention: Global attention remains the same as defined in Sec. 2, but we compute it
in terms of blocks. In Fig. 3c, g = 1 with block size 2. For BIGBIRD-ITC this implies that
one query and key block, attend to everyone.

The resulting overall attention matrix is shown in Fig. 3d. Unfortunately, simply trying to compute
this attention score as multiplying arbitrary pairs of query and key vectors would require use of gather
operation, which is inefficient. Upon closer examination of window and global attention, we observe
that we can compute these attention scores without using a gather operation.

Recall, full dense attention scores can be calculated by simple matrix product of query and key matrix
with a cost of O(n2d), as illustrated in Fig. 4a. Now note that if we blockify the query and key matrix
and multiply, then with only O(nbd) cost we will obtain the block diagonal portion of the attention
score, as depicted in Fig. 4b. To elaborate this lets assume that Q,K ∈ Rn×d are the query and key
matrix corresponding to n tokens such that Qi. = xiWQ and Ki. = xiWK . We reshape n× d query

(a) Random Attention (b) Window Attention (c) Global Attention (d) BIGBIRD

Figure 3: Building blocks of the block-attention mechanism used in BIGBIRD with block size =
2. This implies the attention matrix is split into blocks of size 2 × 2. All the previous BIGBIRD
parameters work on each block as a unit. White color indicates absence of attention. (a) random
attention with r = 1, (b) sliding window attention with w = 3 (c) global attention with g = 1. (d) the
combined BIGBIRD model.
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(a) Full all pair attention can be obtained by direct matrix multiplication between the query
and key matrix. Groupings just shown for guidance.
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(b) Block diagonal attention can be computed by “blockifying” the query and key matrix
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(c) Window local attention obtained by “blockifying” the query/key matrix, copying key matrix,
and rolling the resulting key tensor (Obtaining rolled key-block tensor is illustrated in detail
in Fig. 5). This ensures that every query attends to at least one block and at most two blocks of
keys of size b on each side.
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(d) Window + Random attention obtained by following the procedure above along with
gathering some random key blocks.

Figure 4: Idea behind fast sparse attention computation in BIGBIRD.
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Figure 5: Construction of rolled key-block tensor. Make w copies of the key matrix. Index the copies
as −(w− 1)/2 ≤ j ≤ (w− 1)/2. Roll jth copy by j blocks. Positive roll means circular shift entries
left and likewise for negative roll corresponds to right shift. Finally, reshape by grouping the blocks
along a new axis to obtain the key-blocked tensor. For illustration purpose w = 3 is chosen.

matrix, Q, and key matrix, K, along the sequence length to obtain dn/be × b× d tensors Q′ and K ′
respectively. Now we multiply the two tensors as

Ajst =
∑
u

Q′jsuK
′
jtu, j = 0, 1, ..., dn/be (13)

The resulting A tensor of size dn/bc × b × b can be reshaped to correspond to the block diagonal
portion of the full attention pattern. Now to extend the attention from block diagonal to a window, i.e.
where query block with index j attends to key block with index j − (w − 1)/2 to j + (w − 1)/2, we
make w copies of the reshaped key tensor K ′. We “roll” each copy of key-block tensor incrementally
along the first axis of length dn/be as illustrated in Fig. 5. Multiplying thesew rolled key-block tensors
with the query-block tensor would yield the desired window attention scores (Fig. 4c). Likewise the
global component, we can always include the first g blocks from key tensor corresponding to the
global tokens. Finally, for the random attention, which is very small (r = 3 for all of our experiments),
we resort to using gather ops (Fig. 4d). Also note by design, each query block attends to exactly r
random blocks.

Thus, the result of all the three components is basically a compact dense tensor K ′′ of size dn/be ×
(g + w + r)b× d as shown in Fig. 6. Computing the final attention score then just boils down to a
dense tensor multiplication, at which TPU/GPU are very efficient. Specifically, we need to multiply
Q′ (size: dn/be× b× d) and K ′′ (size: dn/be× (g+w+ r)b× d) with a cost of O(n(g+w+ r)bd)
to yield the desired attention score tensor of size dn/be × b× (g + w + r)b, which can be reshaped
to obtain all the attention scores according to the BigBird pattern.
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Figure 6: Overview of BIGBIRD attention computation. Structured block sparsity helps in compactly
packing our operations of sparse attention, thereby making our method efficient on GPU/TPU. On the
left, we depict the transformed dense query and key tensors. The query tensor is obtained by simply
blocking and reshaping while the final key tensor by concatenating three transformations: The first
green columns, corresponding to global attention, is fixed. The middle blue columns correspond to
window local attention and can be obtained by appropriately rolling as illustrated in Fig. 5. For the
final orange columns, corresponding to random attentions, we need to use computationally inefficient
gather operation. Dense multiplication between the query and key tensors efficiently calculates the
sparse attention pattern (except the first row-block, which is computed by direct multiplication), using
the ideas illustrated in Fig. 4. The resultant matrix on the right is same as that shown in Fig. 3d.
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E NLP experiments details

E.1 MLM Pretraining

We use four publicly available datasets Books [110], CC-News [34], Stories [89] and Wikipedia to
pretrain BIGBIRD. We borrow the sentencepiece vocabulary as RoBERTa (which is in turn borrowed
from GPT2). We split any document longer than 4096 into multiple documents and we join documents
that were much smaller than 4096. Following the original BERT training, we mask 15% of tokens in
these four datasets, and train to predict the mask. We warm start from RoBERTa’s checkpoint. We
train two different models: BIGBIRD-ITC-base and BIGBIRD-ETC-base. The hyper-parameters for
these two models are given in Tab. 8. In all experiments we use a learning rate warmup over the first
10,000 steps, and linear decay of the learning rate.

Similar to the norm, we trained a large version of model as well, which has 24 layers with 16 heads
and hidden dimension of 1024. Following the observation from RoBERTa, we pretrain on a larger
batch size of 2048 for this size. For BIGBIRD-ITC the block length was kept same as base size, but
for BIGBIRD-ETC the block length was almost doubled to 169. All the remaining parameters were
the same.

Parameter BIGBIRD-ITC BIGBIRD-ETC

Block length, b 64 84
# of global token, g 2× b 256
Window length, w 3× b 3× b
# of random token, r 3× b 0
Max. sequence length 4096 4096
# of heads 12 12
# of hidden layers 12 12
Hidden layer size 768 768
Batch size 256 256
Loss MLM MLM
Activation layer gelu gelu
Dropout prob 0.1 0.1
Attention dropout prob 0.1 0.1
Optimizer Adam Adam
Learning rate 10−4 10−4

Compute resources 8× 8 TPUv3 8× 8 TPUv3

Table 8: Hyperparameters for the two BIGBIRD base models for MLM.

E.2 Question Answering

The detailed statistics of the four datasets used are given in Tab. 11. All the hyperparameters for
BIGBIRD, used for creating Tab. 2 are shown in Tab. 12 and those submitted to get Tab. 3 are shown
in Tab. 13. We use two types of regularization in training:

• We used a variant of contrastive predictive coding [70] as a dual encoder model.
• We use position embedding for ITC and relative position encoding [79] for ETC.

Next, we will mention the dataset/task specific part of the model.

Dataset # tokens Avg. doc len.

Books [110] 1.0B 37K
CC-News [34] 7.4B 561
Stories [89] 7.7B 8.2K
Wikipedia 3.1B 592

Table 9: Dataset used for pre training.

Model Base Large

RoBERTa (sqln: 512) 1.846 1.496
Longformer (sqln: 4096) 1.705 1.358
BIGBIRD-ITC (sqln: 4096) 1.678 1.456
BIGBIRD-ETC (sqln: 4096) 1.611 1.274

Table 10: MLM performance on held-out set.
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Instances Instance Length

Dataset Training Dev Median Max

HotpotQA-distractor [100] 90447 7405 1227 3560
Natural Questions [52] 307373 7830 3258 77962
TriviaQA [41] 61888 7993 4900 32755
WikiHop [95] 43738 5129 1541 20337

Table 11: Question Answering Datasets

Parameter HotpotQA NaturalQ TriviaQA WikiHop

Global token location ITC ETC ITC ETC ITC ETC ITC ETC

# of global token, g 128 256 128 230 128 320 128 430
Window length, w 192 252 192 252 192 252 192 252
# of random token, r 192 0 192 0 192 0 192 0
Max. sequence length 4096 4096 4096 4096 4096 4096 4096 4096
# of heads 12 12 12 12 12 12 12 12
# of hidden layers 12 12 12 12 12 12 12 12
Hidden layer size 768 768 768 768 768 768 768 768
Batch size 32 32 128 128 32 32 64 64

Loss cross-entropy cross-entropy cross-entropy cross-entropy
golden spans golden spans noisy spans [18] ans choices

Compute resources 4× 2 TPUv3 4× 8 TPUv3 4× 2 TPUv3 4× 4 TPUv3

Table 12: Hyperparameters of base BIGBIRD model used for Question Answering i.e. the numbers
reported in Tab. 2

HotpotQA The data consists of each question with multiple evidence paragraphs. We filtered 16
QA where the answer was not in the given evidences. For BIGBIRD-ITC, we use first 128 global
tokens. For BIGBIRD-ETC, we have one global token for each question token, one for each evidence
paragraph, and one for each sentence within the paragraph, for a maximum of 256 global token. We
use a dense layer on the output corresponding to global token of the evidence paragraph to predict
whether its a supporting fact with a threshold over the output logits. The answer type (yes/no/span) is
predicted with a single dense layer from the global CLS token. For span based answers, the spans are
predicted with dense layers on the sequence with the distance between start and end positions to be
no more than 30 words. The spans are ranked by sum of start and end logits.

Natural Questions Here also the data consists of question with supporting evidence, but in form of
a single, potentially long, document and not multiple paragraphs. We largely follow the setup of [5].
For documents, that are longer than 4096, a sliding window approach is used with stride of 2048. We
use CLS token at the beginning, followed by the question followed by a separator token followed by
the document as input. For BIGBIRD-ITC, we make the first 128 tokens as global. For BIGBIRD-ETC,
we make a global token for CLS, question, and one token for each of the paragraphs. We train four
predictors at the final layer to predict long answer start, long answer end, short answer start and short
answer end respectively. Instead of independently predicting the start and end of answers we first
predict the start and then predict the best end location beyond the start. For short answer, we limit the
distance between start and end positions to be no more than 38 words. The answer type (null, yes, no,
short, long) is predicted from CLS token output embedding. When the logit for a yes/no answer is
higher than the logits for short, long or null answer, we replace the short answer with a corresponding
yes/no text.

TriviaQA The data consists of question-answer pairs with Wikipedia articles as the “noisy” sup-
porting evidence. We call them noisy because the given Wikipedia articles may or may not contain
the answer. Moreover, the answer entities is not annotated to appropriate span in the article, rather
all occurrences found using fuzzy string matching are listed. We use CLS token at the beginning,
followed by the question followed by a separator token followed by the document as input. For
BIGBIRD-ITC, we make the first 128 tokens as global. For BIGBIRD-ETC, we make a global token
for CLS, question, and one token for each sentence up to a maximum of 320 global tokens. Given the
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Parameter HotpotQA NaturalQ TriviaQA WikiHop

Global token location ETC ETC ETC ETC
# of global token, g 256 230 320 430
Window length, w 507 507 507 507
# of random token, r 0 0 0 0
Max. sequence length 4096 4096 4096 4096
# of heads 16 16 16 16
# of hidden layers 24 24 24 24
Hidden layer size 1024 1024 1024 1024
Batch size 32 64 32 64
Loss cross-entropy cross-entropy cross-entropy cross-entropy
Num epochs {5, 9} {3, 5} {3, 5} {5, 10}
Optimizer Adam Adam Adam LAMB
Learning rate 3× 10−5 {5, 10} × 10−5 {3, 5} × 10−5 {2, 5} × 10−5

Compute resources 4× 4 TPUv3 4× 8 TPUv3 4× 4 TPUv3 4× 8 TPUv3

Table 13: Hyperparameters of large BIGBIRD model for Question Answering submitted for test
i.e. the numbers reported in Tab. 3

noisy nature of answer span, we follow Clark and Gardner [18] for training. We use a dense layer on
the sequence to predict the answer span for each article independently, with the distance between
start and end positions to be no more than 16 words. For each article the span with maximum start
logit + end logit is chosen. Then we normalize over all the documents associated with that question.

WikiHop For each question in WikiHop, we are given upto 79 candidates, and 63 supporting
paragraphs. In our BIGBIRD-ITC model, following Beltagy et al. [8], we concatenate the answer and
the question with special tokens, [q] Question [/q] [ans] Ans1 [/ans] . . . [ans]
AnsN [/ans] along with the context. As the start of the text, always contains questions followed
by answers, we make the first 128 token attend globally. In BIGBIRD-ETC model, we do not need
to insert special [ans], [/ans] etc. as we design global tokens appropriately. Along with global
tokens for question, we have one per candidate answer up to a maximum of 430. Further, we linked
answer tokens to their mentions using relative position label. Lastly, we use a dense layer that takes in
the output vector corresponding to a candidate answer, and predicts a score for the current candidate
to be the correct answer. We apply this dense layer to each candidate independently and the candidate
with the best score is picked as our final answer.

It is worthwhile to note that explicitly designed attention connection in ETC works slightly better, the
random connection based ITC is pretty competative.

E.3 Relationship to Contemporary Work

Longformer Child et al. [16] introduced localized sliding window to reduce computation. A
more recent version, which includes localized sliding windows and global tokens was introduced
independently by Longofrmer[8]. Although BIGBIRD contains additional random tokens, there are
also differences in the way global and local tokens are realized. In particular even when there is no
random token, as used to get SoTA in question answering, there are two key differences between
Longformer and BIGBIRD-etc (see [4]):

1. We use global-local attention with relative position encodings enables it to better handle
structured inputs

2. Unlike Longformer, we train the global tokens using CPC loss and learn their use during
finetuning.

E.4 Classification

We try two types of classification task.

Document classification We experiment on datasets of different lengths and contents, as listed in
Tab. 15. In particular, we look at sentiment analysis (IMDb [64] and Yelp-5 [108]) task and topic
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Parameter IMDb Arxiv Patents Hyperpartisan Yelp-5

Batch size 64 64 64 32 32
Learning rate 1× 10−5 3× 10−5 5× 10−5 5× 10−6 2× 10−5

Num epochs 40 10 3 15 2
TPUv3 slice 4× 4 4× 4 4× 4 4× 2 4× 8
# of heads 12 16
# of hidden layers 12 24
Hidden layer size 768 1024
Block length, b 64
Global token location ITC
# of global token, g 2× b
Window length, w 3× b
# of random token, r 3× b
Max. sequence length 4096
Vocab size 50358
Activation layer gelu
Dropout prob 0.1
Attention dropout prob 0.1
Loss cross-entropy
Optimizer Adam

Table 14: Hyperparameters for document classification.

Model IMDb [64] Yelp-5 [108] Arxiv [35] Patents [53] Hyperpartisan [47]

# Examples 25000 650000 30043 1890093 645
# Classes 2 5 11 663 2
Excess fraction 0.14 0.04 1.00 0.90 0.53

SoTA [88] 97.4 [3] 73.28 [69] 87.96 [69] 69.01 [40] 90.6
RoBERTa 95.0± 0.2 71.75 87.42 67.07 87.8± 0.8
BIGBIRD 95.2± 0.2 72.16 92.31 69.30 92.2± 1.7

Table 15: Classification results. We report the F1 micro-averaged score for all datasets. Experiments
on smaller IMDb and Hyperpartisan datasets are repeated 5 times and the average performance is
presented along with standard deviation.

assignment (Arxiv [35], Patents [53], and Hyperpartisan [47]) task. Following BERT, we used one
layer with cross entropy loss on top of the first [CLS] token from the BIGBIRD encoder consuming
4096 tokens. We report the results of document classification experiments in Tab. 15. We compare
against state-of-the-art (SoTA) methods for each dataset and plain RoBERTa model with 512 tokens
truncation. In all experiments we use a learning rate warmup over the first 10% steps, and linear decay
of the learning rate and detail list of remaining hyperparameters are provided in Tab. 14. For better
quantitative evaluation, we compute the fraction of the dataset that exceeds 512 tokens, i.e. the length
at which the document are often truncated. We see that gains of using BIGBIRD are more significant
when we have longer documents and fewer training examples. For instance, using base sized model,
BIGBIRD improves state-of-the-art for Arxiv dataset by about 5% points. On Patents dataset, there

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

BERT 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4
XLNet 86.8/- 91.4 91.7 94.7 60.2 89.5 88.2 74.0
RoBERTa 87.6/- 91.9 92.8 94.8 63.6 91.2 90.2 78.7
BIGBIRD 87.5/87.3 88.6 92.2 94.6 58.5 87.8 91.5 75.0

Table 16: GLUE Dev results on base sized models. Number of training examples is reported below
each task. MCC score is reported for CoLA, F1 score is reported for MRPC, Spearman correlation is
reported for STS-B, and accuracy scores are reported for the other tasks.
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is improvement over using simple BERT/RoBERTa, but given the large size of training data the
improvement over SoTA (which is not BERT based) is not significant. Note that this performance
gain is not seen for much smaller IMDb dataset. Along with experimental setup detail, we present
detailed results in App. E.4 which show competitive performance.

GLUE The General Language Understanding Evaluation (GLUE) benchmark [92], test lan-
guage models on 8 different natural language understanding tasks. We used the same training
parameters as mentioned in https://github.com/pytorch/fairseq/blob/master/
examples/roberta/README.glue.md. Our model parameters are b = 64, g = 2 × b, w =
3× b, r = 3× b ( we used the BIGBIRD-ITC base model pretrained on MLM task). We compare the
performance of BIGBIRD to BERT, XLNet [101] and RoBERTa in Tab. 16. We find that even on task
that have a much smaller context, our performance is competitive to full attention models.

E.5 Summarization

As discussed in Sec. 4.1, given the small length of output sequence, we used sparse BIGBIRD attention
only for encoder, while keeping the full attention for decoder. The number of hidden layers, number
of heads, and hidden dimension is same for encoder and decoder. The hyperparameters are detailed
in Tab. 17. We summarize our result in Tab. 20. In all experiments, we use a learning rate warmup
over the first 10,000 steps, and square root decay of the learning rate.

Parameter Base: BIGBIRD-RoBERTa Large: BIGBIRD-Pegasus

Block length, b 64 64
Global token location ITC ITC
# of global token, g 2× b 2× b
Window length, w 3× b 3× b
# of random token, r 3× b 3× b

Max. encoder sequence length
BBC-XSUM: 1024 1024

CNN/DM: 2048 2048
Others: 3072 3072

Max. decoder sequence length
BBC-XSUM: 64 64

CNN/DM: 128 128
Others: 256 256

Beam size 5 5

Length penalty BBC-XSUM: 0.7 0.7
Others: 0.8 0.8

# of heads 12 16
# of hidden layers 12 16
Hidden layer size 768 1024
Batch size 128 128

Loss teacher forced teacher forced
cross-entropy cross-entropy

Activation layer gelu gelu
Dropout prob 0.1 0.1
Attention dropout prob 0.1 0.1
Optimizer Adam Adafactor
Learning rate 1× 10−5 1× 10−4

Compute resources 4× 4 TPUv3 4× 8 TPUv3

Table 17: Encoder hyperparameters for Summarization. We use full attention in decoder

Instances Input Length Output Length

Dataset Training Dev Test Median 90%-ile Median 90%-ile

Arxiv [20] 203037 6436 6440 6151 14405 171 352
PubMed [20] 119924 6633 6658 2715 6101 212 318
BigPatent [78] 1207222 67068 67072 3082 7693 123 197

Table 18: Statistics of datasets used for summarization.
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Instances Input Length Output Length

Dataset Training Dev Test Median 90%-ile Median 90%-ile

BBC XSum [67] 204044 11332 11334 359 920 25 32
CNN/DailyMail [36] 287113 13368 11490 777 1439 59 93

Table 19: Shorter summarization dataset statistics.

Model
BBC XSum CNN/DailyMail

R-1 R-2 R-L R1 R2 R-L

Pr
io

rA
rt

Lead 16.30 1.61 11.95 39.60 17.70 36.20
PtGen [77] 29.70 9.21 23.24 39.53 17.28 36.38
ConvS2S [28] 31.89 11.54 25.75 − − −
MMN [48] 32.00 12.10 26.00 − − −
Bottom-Up [29] − − − 41.22 18.68 38.34
TransLM [45] − − − 39.65 17.74 36.85
UniLM [23] − − − 43.47 20.30 40.63
Extr-Abst-BERT [62] 38.81 16.50 31.27 42.13 19.60 39.18
BART [56] 45.14 22.27 37.25 44.16 21.28 40.90

B
as

e

Transformer [91] 29.61 9.47 23.17 34.89 13.13 32.12
+ RoBERTa [76] 39.92 17.33 32.63 39.44 18.69 36.80
+ Pegasus [107] 39.79 16.58 31.70 41.79 18.81 38.93

BIGBIRD-RoBERTa 39.52 17.22 32.30 39.25 18.46 36.61

L
ar

ge

Pegasus (Reported) [107] 47.60 24.83 39.64 44.16 21.56 41.30
Pegasus (Re-eval) 47.37 24.31 39.23 44.15 21.56 41.05
BIGBIRD-Pegasus 47.12 24.05 38.80 43.84 21.11 40.74

Table 20: Summarization ROUGE score for shorter documents.

Following success of several recent works [76, 63], we warm start our encoder-decoder BIGBIRD
transformer model with pretrained weights and the weights between encoder and decoder are shared.
In particular, the query/key/value matrix of self-attention and all the feedforward layers are shared
between encoder and decoder. The only variable that is initialized randomly is the encoder-decoder
attention. For base sized model, we utilize our MLM pretrained model on 4096 sequence length
from App. E.1, which is in turn initialized using the public RoBERTa checkpoint. For the large size
model, we lift weight from the state-of-the-art Pegasus model [107], which is pretrained using an
objective designed for summarization task.

To check if sparse attention causes significant degradation as compared to full attention, we further
experiment on two shorter but popular datasets, where full attention can be used without significantly
truncating the document. The statistics of these two datasets are in Tab. 19. We see that our perfor-
mance is competitive, which shows that sparse attention can achieve similar performance to a full
attention models.
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F Genomics experiments details

In this section we provide details of the experimental setup for BIGBIRD on genomics data.

F.1 Pretraining

We try to keep the experimental setup as close to a typical NLP pipeline. In this regard, we take
human reference GRCh377 and convert it into documents D. Each document d ∈ D is a sequence of
sentences, where each sentence is a sequence of fragments of DNA. We construct the documents as
follows:

1. Start with empty document set D = ∅.
2. For each chromosome C, repeat the following procedure 10 times.

(a) Pick uniformly at random a starting point q between base pairs 0 and 5000 from the 5’ end.

(b) Repeat until q > |C|
i. Pick uniformly at random s a number between 50 and 100 to denote number of sentences

per document.

ii. Constructs a document d containing s sentences using consecutive base pairs (bps). The
length of each sentence is chosen uniformly at random between 500-1000. Thus the
resulting document has 25, 000 - 100, 000 bps.

iii. D = D
⋃
d

iv. q = q + |d|

By this procedure we end-up with approximately 450K documents.

Next we run sentencepiece [50] tokenization on the resulting documents. In particular, using 5
characters as the building blocks (four for bases - A, T, C, G and one for missing symbol N), we
construct a byte pair encoding table of size 32k, with each token representing 8.78 base pairs on
average.

Using the above constructed documents, we construct a dataset for two pretraining tasks following
Devlin et al. [22]:

• Masked Language Model (MLM): In order to train a deep bidirectional representation, BERT
training introduces the MLM task, where we simply mask out 15% of the input tokens at random,
and then predict those masked tokens. We can simply replace such masked out of the tokens with
a [MASK] placeholder, but it leads to a distribution mis-match for downstream tasks which will
not have such placeholders. To mitigate with this issue, out of the 15% of the tokens selected for
masking:

– 80% of the tokens are actually replaced with the token [MASK].
– 10% of the time tokens are replaced with a random token.
– 10% of the time tokens are left unchanged, but are still predicted at output.

We run this entire sequence through the BIGBIRD transformer encoder and then predict corre-
sponding to the masked positions, based on the context provided by the other non-masked tokens
in the sequence.

• Next Sentence Prediction (NSP): In order to understand relationship between two sequences,
BERT training introduces the NSP task, where we predict if a given pair of sequences are
contiguous or not. During training the model gets as input pairs of sequences separated by [SEP]
token along with a [CLS] token at the start. Overall the input pattern is: [CLS] sequence A [SEP]
sequence B [SEP]. For 50% of the time the second sequence comes from true sequence after the
first one. Remaining 50% of the time it is a a random sequence from the full dataset. The model
is then required to predict this relationship using the output corresponding to the [CLS] token,
which is fed into a simple binary classification layer.

7https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
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Figure 7: Visual description of how the masked language modeling data was generated from raw DNA
dataset. The raw DNA sequences of GRCh37, where split at random positions to create documents
with 50-100 sentences where each sentence was 500-1000 base pairs (bps). Thus each document had
a continuous strand of 25000-100,000 bps of DNA. This process was repeated 10 times to create 10
sets of document for each chromosome of GRCH37. The resulting set of documents was then passed
through Sentencepiece that created tokens of average 8bp. For pretraining we used masked language
model and masked 10% of the tokens and trained on predicting the masked tokens.
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Figure 8: BIGBIRD accuracy
with context length.

The sequence of steps is visually elaborated in Fig. 9. The model is
trained with both MLM and NSP together. Training hyperparame-
ter is provided in second columns of Tab. 21. In all experiments we
use a learning rate warmup over the first 10,000 steps, and linear
decay of the learning rate.

We additionally performed a simple ablation study to validate the
hypothesis, that similar to NLP, having a larger context improves
performance. We use MLM task described above to test how BIG-
BIRD performed with sequences of different length. Accuracy on
MLM task with increasing sequence length is shown in Fig. 8. Not
only longer context improves final accuracy, it also leads to faster
learning, as we have now more opportunities for masking.

F.2 Promoter Region Prediction

The promoter region plays an important role in transcription initiation and thus its recognition is
an important area of interest in the field of bioinformatics. Following Oubounyt et al. [71], we use
datasets from Eukaryotic Promoter Database (EPDnew) [24], which contains 29,597 promoter region
in the human genome. Around the transcription start site (TSS), we extract a sequence of 8000 bp
(-5000 +3000 bp) from the human reference genome GRCh37. Since EPDnew uses newer GRCh38,
we convert to GRCh37 coordinates using LiftOver [44].
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Figure 9: Visual description of the DNA segment from which we predict the chromatin profile for a
given non-coding region of the raw DNA sequences of GRCh37. We take 8000 bps of DNA before
and after the given non-coding region as context. The complete fragment of DNA including the
context on both side, is then tokenized to form our input sequence of tokens. The task is to predict
919 chromatin profile including 690 transcription factors (TF) binding profiles for 160 different TFs,
125 DNase I sensitivity (DHS) profiles and 104 histone-mark (HM) profiles

Following Oubounyt et al. [71] for each promoter region example, a negative example (non-promoter
sequences) with the same size of the positive one is constructed as follow: The positive sequence is
divided into 20 subsequences. Then, 12 subsequences are picked randomly and substituted randomly.
The remaining 8 subsequences are conserved. This process is illustrated in Figure 1 of [71]. Applying
this process to the positive set results in new non-promoter sequences with conserved parts from
promoter sequences (the unchanged subsequences, 8 subsequences out of 20). These parameters
enable generating a negative set that has 32 and 40% of its sequences containing conserved portions
of promoter sequences.

We prefix and append each example with [CLS] and [SEP] token respectively. The output correspond-
ing to the [CLS] token from BIGBIRD transformer encoder is fed to a simple binary classification layer.
We fine-tune the pretrained BIGBIRD from App. F.1 using hyper-parameters described in Tab. 21.
We note that high performance is not surprising due to the overlap in the nature of negative example
generation and MLM pretraining.

F.3 Chromatin-Profile Prediction

The first step of sequence-based algorithmic framework for predicting non-coding effects is to build a
model to predict, large scale chromatic profile [109]. In this paper, we use the dataset provided in

Parameter Pretraining Promoter Region Chromatin-Profile

Block length, b 64 64 64
Global token location ITC ITC ITC
# of global token, g 2× b 2× b 2× b
Window length, w 3× b 3× b 3× b
# of random token, r 3× b 3× b 3× b
Max. Sequence Length 4096 4096 4096
# of heads 12 12 12
# of hidden layers 12 12 12
Hidden layer size 768 768 768
Batch Size 256 256 256
Vocab Size 32000 32000 32000

Loss MLM+NSP BCE 919 x +ve upweighted
BCE

Dropout prob 0.1 0.1 0.1
Optimizer Adam Adam Adam
Learning rate 0.0001 0.0001 0.0001
# of steps 1000000 711 500000
Compute Resources 8× 8 TPUv3 8× 8 TPUv3 8× 8 TPUv3

Table 21: Table of hyperparameters for Computational biology.
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Zhou and Troyanskaya [109]8, to train BIGBIRD to predict the chromatic profile.

Each training sample consists of a 8,000-bp sequence from the human GRCh37 reference genome
centered on each 200-bp bin and is paired with a label vector for 919 chromatin features. As
before, we prefix and append each example with [CLS] and [SEP] token respectively. The output
corresponding to the [CLS] token from BIGBIRD transformer encoder is fed to a linear layer with
919 heads. Thus we jointly predict the 919 independent binary classification problems. We fine-tune
the pretrained BIGBIRD from App. F.1 using hyper-parameters described in Tab. 21. As the data is
highly imbalanced data (way more negative examples than positive examples), we upweighted loss
function for positive examples by factor of 8.

We used training and testing split provided by Zhou and Troyanskaya [109] using chromosomes and
strictly non-overlapping. Chromosome 8 and 9 were excluded from training to test chromatin feature
prediction performances, and the rest of the autosomes were used for training and validation. 4,000
samples on chromosome 7 spanning the genomic coordinates 30,508,751–35,296,850 were used as
the validation set.

As the predicted probability for each sequence in DeepSea Zhou and Troyanskaya [109] was computed
as the ensemble average of the probability predictions for the forward and complementary sequence
pairs, we also predict using an ensemble of two BIGBIRD model trained independently.

8http://deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.
gz
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