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Abstract

Language model pre-training, such as BERT,
has significantly improved the performances
of many natural language processing tasks.
However, pre-trained language models are usu-
ally computationally expensive, so it is diffi-
cult to efficiently execute them on resource-
restricted devices. To accelerate inference
and reduce model size while maintaining
accuracy, we first propose a novel Trans-
former distillation method that is specially de-
signed for knowledge distillation (KD) of the
Transformer-based models. By leveraging this
new KD method, the plenty of knowledge en-
coded in a large “teacher” BERT can be ef-
fectively transferred to a small “student” Tiny-
BERT. Then, we introduce a new two-stage
learning framework for TinyBERT, which per-
forms Transformer distillation at both the pre-
training and task-specific learning stages. This
framework ensures that TinyBERT can capture
the general-domain as well as the task-specific
knowledge in BERT.

TinyBERT4
1 with 4 layers is empirically ef-

fective and achieves more than 96.8% the per-
formance of its teacher BERTBASE on GLUE
benchmark, while being 7.5x smaller and 9.4x
faster on inference. TinyBERT4 is also signifi-
cantly better than 4-layer state-of-the-art base-
lines on BERT distillation, with only ∼28%
parameters and ∼31% inference time of them.
Moreover, TinyBERT6 with 6 layers performs
on-par with its teacher BERTBASE.

1 Introduction

Pre-training language models then fine-tuning on
downstream tasks has become a new paradigm for

∗Authors contribute equally.
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‡Corresponding authors.

1The code and models are publicly available at https:
//github.com/huawei-noah/Pretrained-Language-Model/tree/
master/TinyBERT

natural language processing (NLP). Pre-trained lan-
guage models (PLMs), such as BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019), RoBERTa (Liu
et al., 2019), ALBERT (Lan et al., 2020), T5 (Raf-
fel et al., 2019) and ELECTRA (Clark et al., 2020),
have achieved great success in many NLP tasks
(e.g., the GLUE benchmark (Wang et al., 2018)
and the challenging multi-hop reasoning task (Ding
et al., 2019)). However, PLMs usually have a
large number of parameters and take long infer-
ence time, which are difficult to be deployed on
edge devices such as mobile phones. Recent stud-
ies (Kovaleva et al., 2019; Michel et al., 2019; Voita
et al., 2019) demonstrate that there is redundancy
in PLMs. Therefore, it is crucial and feasible to
reduce the computational overhead and model stor-
age of PLMs while retaining their performances.

There have been many model compression tech-
niques (Han et al., 2016) proposed to accelerate
deep model inference and reduce model size while
maintaining accuracy. The most commonly used
techniques include quantization (Gong et al., 2014),
weights pruning (Han et al., 2015), and knowl-
edge distillation (KD) (Romero et al., 2014). In
this paper, we focus on knowledge distillation, an
idea originated from Hinton et al. (2015), in a
teacher-student framework. KD aims to transfer
the knowledge embedded in a large teacher net-
work to a small student network where the student
network is trained to reproduce the behaviors of the
teacher network. Based on the framework, we pro-
pose a novel distillation method specifically for the
Transformer-based models (Vaswani et al., 2017),
and use BERT as an example to investigate the
method for large-scale PLMs.

KD has been extensively studied in NLP (Kim
and Rush, 2016; Hu et al., 2018) as well as for
pre-trained language models (Sanh et al., 2019;
Sun et al., 2019, 2020; Wang et al., 2020). The
pre-training-then-fine-tuning paradigm firstly pre-
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Figure 1: The illustration of TinyBERT learning.

trains BERT on a large-scale unsupervised text
corpus, then fine-tunes it on task-specific dataset,
which greatly increases the difficulty of BERT dis-
tillation. Therefore, it is required to design an ef-
fective KD strategy for both training stages.

To build a competitive TinyBERT, we firstly
propose a new Transformer distillation method to
distill the knowledge embedded in teacher BERT.
Specifically, we design three types of loss func-
tions to fit different representations from BERT
layers: 1) the output of the embedding layer; 2) the
hidden states and attention matrices derived from
the Transformer layer; 3) the logits output by the
prediction layer. The attention based fitting is in-
spired by the recent findings (Clark et al., 2019)
that the attention weights learned by BERT can cap-
ture substantial linguistic knowledge, and it thus
encourages the linguistic knowledge can be well
transferred from teacher BERT to student Tiny-
BERT. Then, we propose a novel two-stage learn-
ing framework including the general distillation
and the task-specific distillation, as illustrated in
Figure 1. At general distillation stage, the original
BERT without fine-tuning acts as the teacher model.
The student TinyBERT mimics the teacher’s behav-
ior through the proposed Transformer distillation
on general-domain corpus. After that, we obtain
a general TinyBERT that is used as the initializa-
tion of student model for the further distillation.
At the task-specific distillation stage, we first do
the data augmentation, then perform the distilla-
tion on the augmented dataset using the fine-tuned
BERT as the teacher model. It should be pointed
out that both the two stages are essential to improve
the performance and generalization capability of
TinyBERT.

The main contributions of this work are as fol-
lows: 1) We propose a new Transformer distilla-
tion method to encourage that the linguistic knowl-
edge encoded in teacher BERT can be adequately
transferred to TinyBERT; 2) We propose a novel
two-stage learning framework with performing the
proposed Transformer distillation at both the pre-
training and fine-tuning stages, which ensures that

TinyBERT can absorb both the general-domain and
task-specific knowledge of the teacher BERT. 3)
We show in the experiments that our TinyBERT4

can achieve more than 96.8% the performance of
teacher BERTBASE on GLUE tasks, while having
much fewer parameters (∼13.3%) and less infer-
ence time (∼10.6%), and significantly outperforms
other state-of-the-art baselines with 4 layers on
BERT distillation; 4) We also show that a 6-layer
TinyBERT6 can perform on-par with the teacher
BERTBASE on GLUE.

2 Preliminaries

In this section, we describe the formulation of
Transformer (Vaswani et al., 2017) and Knowledge
Distillation (Hinton et al., 2015). Our proposed
Transformer distillation is a specially designed KD
method for Transformer-based models.

2.1 Transformer Layer

Most of the recent pre-trained language mod-
els (e.g., BERT, XLNet and RoBERTa) are built
with Transformer layers, which can capture long-
term dependencies between input tokens by self-
attention mechanism. Specifically, a standard
Transformer layer includes two main sub-layers:
multi-head attention (MHA) and fully connected
feed-forward network (FFN).
Multi-Head Attention (MHA). The calculation of
attention function depends on the three components
of queries, keys and values, denoted as matrices Q,
K and V respectively. The attention function can
be formulated as follows:

A=
QKT

√
dk

, (1)

Attention(Q,K,V )=softmax(A)V , (2)

where dk is the dimension of keys and acts as a
scaling factor, A is the attention matrix calculated
from the compatibility of Q and K by dot-product
operation. The final function output is calculated
as a weighted sum of values V , and the weight is
computed by applying softmax() operation on
the each column of matrix A. According to Clark
et al. (2019), the attention matrices in BERT can
capture substantial linguistic knowledge, and thus
play an essential role in our proposed distillation
method.

Multi-head attention is defined by concatenating
the attention heads from different representation
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subspaces as follows:

MHA(Q,K,V )=Concat(h1, . . . ,hk)W , (3)

where k is the number of attention heads, and hi
denotes the i-th attention head, which is calculated
by the Attention() function with inputs from
different representation subspaces. The matrix W
acts as a linear transformation.
Position-wise Feed-Forward Network (FFN).
Transformer layer also contains a fully connected
feed-forward network, which is formulated as fol-
lows:

FFN(x) = max(0, xW1 + b1)W2 + b2. (4)

We can see that the FFN contains two linear trans-
formations and one ReLU activation.

2.2 Knowledge Distillation
KD aims to transfer the knowledge of a large
teacher network T to a small student network S.
The student network is trained to mimic the behav-
iors of teacher networks. Let fT and fS represent
the behavior functions of teacher and student net-
works, respectively. The behavior function targets
at transforming network inputs to some informa-
tive representations, and it can be defined as the
output of any layer in the network. In the context of
Transformer distillation, the output of MHA layer
or FFN layer, or some intermediate representations
(such as the attention matrix A) can be used as
behavior function. Formally, KD can be modeled
as minimizing the following objective function:

LKD =
∑
x∈X

L
(
fS(x), fT (x)

)
, (5)

where L(·) is a loss function that evaluates the dif-
ference between teacher and student networks, x
is the text input and X denotes the training dataset.
Thus the key research problem becomes how to de-
fine effective behavior functions and loss functions.
Different from previous KD methods, we also need
to consider how to perform KD at the pre-training
stage of BERT in addition to the task-specific train-
ing stage.

3 Method

In this section, we propose a novel distillation
method for Transformer-based models, and present
a two-stage learning framework for our model dis-
tilled from BERT, which is called TinyBERT.

…
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Figure 2: The details of Transformer-layer distillation
consisting of Attnloss(attention based distillation) and
Hidnloss(hidden states based distillation).

3.1 Transformer Distillation
The proposed Transformer distillation is a specially
designed KD method for Transformer networks. In
this work, both the student and teacher networks are
built with Transformer layers. For a clear illustra-
tion, we formulate the problem before introducing
our method.
Problem Formulation. Assuming that the stu-
dent model has M Transformer layers and teacher
model has N Transformer layers, we start with
choosing M out of N layers from the teacher
model for the Transformer-layer distillation. Then
a function n = g(m) is defined as the mapping
function between indices from student layers to
teacher layers, which means that the m-th layer
of student model learns the information from the
g(m)-th layer of teacher model. To be precise, we
set 0 to be the index of embedding layer and M +1
to be the index of prediction layer, and the corre-
sponding layer mappings are defined as 0 = g(0)
and N + 1 = g(M + 1) respectively. The effect
of the choice of different mapping functions on the
performances is studied in the experiment section.
Formally, the student can acquire knowledge from
the teacher by minimizing the following objective:

Lmodel=
∑
x∈X

M+1∑
m=0

λmLlayer(f
S
m(x), fTg(m)(x)), (6)

where Llayer refers to the loss function of a given
model layer (e.g., Transformer layer or embed-
ding layer), fm(x) denotes the behavior function
induced from the m-th layers and λm is the hyper-
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parameter that represents the importance of the
m-th layer’s distillation.
Transformer-layer Distillation. The proposed
Transformer-layer distillation includes the atten-
tion based distillation and hidden states based dis-
tillation, which is shown in Figure 2. The atten-
tion based distillation is motivated by the recent
findings that attention weights learned by BERT
can capture rich linguistic knowledge (Clark et al.,
2019). This kind of linguistic knowledge includes
the syntax and coreference information, which is
essential for natural language understanding. Thus
we propose the attention based distillation to en-
courage that the linguistic knowledge can be trans-
ferred from teacher (BERT) to student (TinyBERT).
Specifically, the student learns to fit the matrices
of multi-head attention in the teacher network, and
the objective is defined as:

Lattn =
1

h

∑h

i=1
MSE(AS

i ,A
T
i ), (7)

where h is the number of attention heads, Ai ∈
Rl×l refers to the attention matrix corresponding
to the i-th head of teacher or student, l is the input
text length, and MSE() means the mean squared
error loss function. In this work, the (unnormal-
ized) attention matrix Ai is used as the fitting target
instead of its softmax output softmax(Ai), since
our experiments show that the former setting has a
faster convergence rate and better performances.

In addition to the attention based distillation,
we also distill the knowledge from the output of
Transformer layer, and the objective is as follows:

Lhidn = MSE(HSWh,H
T ), (8)

where the matrices HS ∈ Rl×d′ and HT ∈ Rl×d

refer to the hidden states of student and teacher net-
works respectively, which are calculated by Equa-
tion 4. The scalar values d and d′ denote the hidden
sizes of teacher and student models, and d′ is often
smaller than d to obtain a smaller student network.
The matrix Wh ∈ Rd′×d is a learnable linear trans-
formation, which transforms the hidden states of
student network into the same space as the teacher
network’s states.
Embedding-layer Distillation. Similar to the
hidden states based distillation, we also perform
embedding-layer distillation and the objective is:

Lembd = MSE(ESWe,E
T ), (9)

where the matrices ES and HT refer to the em-
beddings of student and teacher networks, respec-
tively. In this paper, they have the same shape as
the hidden state matrices. The matrix We is a linear
transformation playing a similar role as Wh.
Prediction-layer Distillation. In addition to im-
itating the behaviors of intermediate layers, we
also use the knowledge distillation to fit the predic-
tions of teacher model as in Hinton et al. (2015).
Specifically, we penalize the soft cross-entropy loss
between the student network’s logits against the
teacher’s logits:

Lpred = CE(zT /t, zS/t), (10)

where zS and zT are the logits vectors predicted
by the student and teacher respectively, CE means
the cross entropy loss, and t means the tempera-
ture value. In our experiment, we find that t = 1
performs well.

Using the above distillation objectives (i.e. Equa-
tions 7, 8, 9 and 10), we can unify the distilla-
tion loss of the corresponding layers between the
teacher and the student network:

Llayer=


Lembd, m=0

Lhidn+Lattn,M≥m>0

Lpred, m=M + 1

(11)

3.2 TinyBERT Learning
The application of BERT usually consists of two
learning stages: the pre-training and fine-tuning.
The plenty of knowledge learned by BERT in the
pre-training stage is of great importance and should
be transferred to the compressed model. There-
fore, we propose a novel two-stage learning frame-
work including the general distillation and the
task-specific distillation, as illustrated in Figure 1.
General distillation helps TinyBERT learn the rich
knowledge embedded in pre-trained BERT, which
plays an important role in improving the general-
ization capability of TinyBERT. The task-specific
distillation further teaches TinyBERT the knowl-
edge from the fine-tuned BERT. With the two-step
distillation, we can substantially reduce the gap
between teacher and student models.

General Distillation. We use the original BERT
without fine-tuning as the teacher and a large-scale
text corpus as the training data. By performing the
Transformer distillation 2 on the text from general

2In the general distillation, we do not perform prediction-
layer distillation as Equation 10. Our motivation is to make
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Algorithm 1 Data Augmentation Procedure for
Task-specific Distillation
Input: x is a sequence of words
Params: pt: the threshold probability

Na: the number of samples augmented per example
K: the size of candidate set

Output: D′: the augmented data
1: n← 0 ; D′ ← [ ]
2: while n < Na do
3: xm ← x
4: for i←1 to len(x) do
5: if x[i] is a single-piece word then
6: Replace xm[i] with [MASK]
7: C ← K most probable words of BERT(xm)[i]
8: else
9: C ← K most similar words of x[i] from GloVe

10: end if
11: Sample p ∼ Uniform(0, 1)
12: if p ≤ pt then
13: Replace xm[i] with a word in C randomly
14: end if
15: end for
16: Append xm to D′

17: n← n+ 1
18: end while
19: return D′

domain, we obtain a general TinyBERT that can be
fine-tuned for downstream tasks. However, due to
the significant reductions of the hidden/embedding
size and the layer number, general TinyBERT per-
forms generally worse than BERT.

Task-specific Distillation. Previous studies
show that the complex models, such as fine-
tuned BERTs, suffer from over-parametrization for
domain-specific tasks (Kovaleva et al., 2019). Thus,
it is possible for smaller models to achieve com-
parable performances to the BERTs. To this end,
we propose to produce competitive fine-tuned Tiny-
BERTs through the task-specific distillation. In
the task-specific distillation, we re-perform the pro-
posed Transformer distillation on an augmented
task-specific dataset. Specifically, the fine-tuned
BERT is used as the teacher and a data augmenta-
tion method is proposed to expand the task-specific
training set. Training with more task-related exam-
ples, the generalization ability of the student model
can be further improved.

Data Augmentation. We combine a pre-trained
language model BERT and GloVe (Pennington
et al., 2014) word embeddings to do word-level

the TinyBERT primarily learn the intermediate structures of
BERT at pre-training stage. From our preliminary experi-
ments, we also found that conducting prediction-layer distilla-
tion at pre-training stage does not bring extra improvements
on downstream tasks, when the Transformer-layer distillation
(Attn and Hidn distillation) and Embedding-layer distillation
have already been performed.

replacement for data augmentation. Specifically,
we use the language model to predict word replace-
ments for single-piece words (Wu et al., 2019), and
use the word embeddings to retrieve the most simi-
lar words as word replacements for multiple-pieces
words3. Some hyper-parameters are defined to con-
trol the replacement ratio of a sentence and the
amount of augmented dataset. More details of the
data augmentation procedure are shown in Algo-
rithm 1. We set pt = 0.4, Na = 20, K = 15 for all
our experiments.

The above two learning stages are complemen-
tary to each other: the general distillation provides
a good initialization for the task-specific distilla-
tion, while the task-specific distillation on the aug-
mented data further improves TinyBERT by focus-
ing on learning the task-specific knowledge. Al-
though there is a significant reduction of model size,
with the data augmentation and by performing the
proposed Transformer distillation method at both
the pre-training and fine-tuning stages, TinyBERT
can achieve competitive performances in various
NLP tasks.

4 Experiments

In this section, we evaluate the effectiveness and
efficiency of TinyBERT on a variety of tasks with
different model settings.

4.1 Datasets

We evaluate TinyBERT on the General Language
Understanding Evaluation (GLUE) (Wang et al.,
2018) benchmark, which consists of 2 single-
sentence tasks: CoLA (Warstadt et al., 2019), SST-
2 (Socher et al., 2013), 3 sentence similarity tasks:
MRPC (Dolan and Brockett, 2005), STS-B (Cer
et al., 2017), QQP (Chen et al., 2018), and 4 natural
language inference tasks: MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016), RTE (Ben-
tivogli et al., 2009) and WNLI (Levesque et al.,
2012). The metrics for these tasks can be found in
the GLUE paper (Wang et al., 2018).

4.2 TinyBERT Settings

We instantiate a tiny student model (the number
of layers M=4, the hidden size d′=312, the feed-
forward/filter size d′i=1200 and the head number
h=12) that has a total of 14.5M parameters. This
model is referred to as TinyBERT4. The original

3A word is tokenized into multiple word-pieces by the
tokenizer of BERT.
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System #Params #FLOPs Speedup MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg
BERTBASE (Teacher) 109M 22.5B 1.0x 83.9/83.4 71.1 90.9 93.4 52.8 85.2 87.5 67.0 79.5
BERTTINY 14.5M 1.2B 9.4x 75.4/74.9 66.5 84.8 87.6 19.5 77.1 83.2 62.6 70.2
BERTSMALL 29.2M 3.4B 5.7x 77.6/77.0 68.1 86.4 89.7 27.8 77.0 83.4 61.8 72.1
BERT4-PKD 52.2M 7.6B 3.0x 79.9/79.3 70.2 85.1 89.4 24.8 79.8 82.6 62.3 72.6
DistilBERT4 52.2M 7.6B 3.0x 78.9/78.0 68.5 85.2 91.4 32.8 76.1 82.4 54.1 71.9
MobileBERTTINY† 15.1M 3.1B - 81.5/81.6 68.9 89.5 91.7 46.7 80.1 87.9 65.1 77.0
TinyBERT4 (ours) 14.5M 1.2B 9.4x 82.5/81.8 71.3 87.7 92.6 44.1 80.4 86.4 66.6 77.0
BERT6-PKD 67.0M 11.3B 2.0x 81.5/81.0 70.7 89.0 92.0 - - 85.0 65.5 -
PD 67.0M 11.3B 2.0x 82.8/82.2 70.4 88.9 91.8 - - 86.8 65.3 -
DistilBERT6 67.0M 11.3B 2.0x 82.6/81.3 70.1 88.9 92.5 49.0 81.3 86.9 58.4 76.8
TinyBERT6 (ours) 67.0M 11.3B 2.0x 84.6/83.2 71.6 90.4 93.1 51.1 83.7 87.3 70.0 79.4

Table 1: Results are evaluated on the test set of GLUE official benchmark. The best results for each group of student
models are in-bold. The architecture of TinyBERT4 and BERTTINY is (M=4, d=312, di=1200), BERTSMALL

is (M=4, d=512, di=2048), BERT4-PKD and DistilBERT4 is (M=4, d=768, di=3072) and the architecture of
BERT6-PKD, DistilBERT6 and TinyBERT6 is (M=6, d=768, di=3072). All models are learned in a single-task
manner. The inference speedup is evaluated on a single NVIDIA K80 GPU. † denotes that the comparison between
MobileBERTTINY and TinyBERT4 may not be fair since the former has 24 layers and is task-agnosticly distilled
from IB-BERTLARGE while the later is a 4-layers model task-specifically distilled from BERTBASE.

BERTBASE (N=12, d=768, di=3072 and h=12)
is used as the teacher model that contains 109M
parameters. We use g(m) = 3 × m as the layer
mapping function, so TinyBERT4 learns from ev-
ery 3 layers of BERTBASE. The learning weight
λ of each layer is set to 1. Besides, for a direct
comparisons with baselines, we also instantiate a
TinyBERT6 (M=6, d′=768, d′i=3072 and h=12)
with the same architecture as BERT6-PKD (Sun
et al., 2019) and DistilBERT6 (Sanh et al., 2019).

TinyBERT learning includes the general distil-
lation and the task-specific distillation. For the
general distillation, we set the maximum sequence
length to 128 and use English Wikipedia (2,500M
words) as the text corpus and perform the interme-
diate layer distillation for 3 epochs with the su-
pervision from a pre-trained BERTBASE and keep
other hyper-parameters the same as BERT pre-
training (Devlin et al., 2019). For the task-specific
distillation, under the supervision of a fine-tuned
BERT, we firstly perform intermediate layer distil-
lation on the augmented data for 20 epochs4 with
batch size 32 and learning rate 5e-5, and then per-
form prediction layer distillation on the augmented
data 5 for 3 epochs with choosing the batch size
from {16, 32} and learning rate from {1e-5, 2e-5,
3e-5} on dev set. At task-specific distillation, the
maximum sequence length is set to 64 for single-
sentence tasks, and 128 for sequence pair tasks.

4For large datasets MNLI, QQP, and QNLI, we only per-
form 10 epochs of the intermediate layer distillation, and for
the challenging task CoLA, we perform 50 epochs at this step.

5For regression task STS-B, the original train set is better.

4.3 Baselines

We compare TinyBERT with BERTTINY,
BERTSMALL

6 (Turc et al., 2019) and several
state-of-the-art KD baselines including BERT-
PKD (Sun et al., 2019), PD (Turc et al., 2019),
DistilBERT (Sanh et al., 2019) and Mobile-
BERT (Sun et al., 2020). BERTTINY means
directly pretraining a small BERT, which has the
same model architecture as TinyBERT4. When
training BERTTINY, we follow the same learning
strategy as described in the original BERT (Devlin
et al., 2019). To make a fair comparison, we use
the released code to train a 4-layer BERT4-PKD7

and a 4-layer DistilBERT4
8 and fine-tuning these

4-layer baselines with suggested hyper-paramters.
For 6-layer baselines, we use the reported numbers
or evaluate the results on the test set of GLUE with
released models.

4.4 Experimental Results on GLUE

We submitted our model predictions to the official
GLUE evaluation server to obtain results on the
test set9, as summarized in Table 1.

The experiment results from the 4-layer student
models demonstrate that: 1) There is a large perfor-
mance gap between BERTTINY (or BERTSMALL)
and BERTBASE due to the dramatic reduction in
model size. 2) TinyBERT4 is consistently bet-
ter than BERTTINY on all the GLUE tasks and

6https://github.com/google-research/bert
7https://github.com/intersun/

PKD-for-BERT-Model-Compression
8https://github.com/huggingface/transformers/tree/

master/examples/distillation
9https://gluebenchmark.com

https://github.com/google-research/bert
https://github.com/intersun/PKD-for-BERT-Model-Compression
https://github.com/intersun/PKD-for-BERT-Model-Compression
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://gluebenchmark.com
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obtains a large improvement of 6.8% on aver-
age. This indicates that the proposed KD learn-
ing framework can effectively improve the per-
formances of small models on a variety of down-
stream tasks. 3) TinyBERT4 significantly outper-
forms the 4-layer state-of-the-art KD baselines (i.e.,
BERT4-PKD and DistilBERT4) by a margin of at
least 4.4%, with ∼28% parameters and 3.1x in-
ference speedup. 4) Compared with the teacher
BERTBASE, TinyBERT4 is 7.5x smaller and 9.4x
faster in the model efficiency, while maintaining
competitive performances. 5) For the challeng-
ing CoLA dataset (the task of predicting linguis-
tic acceptability judgments), all the 4-layer dis-
tilled models have big performance gaps compared
to the teacher model, while TinyBERT4 achieves
a significant improvement over the 4-layer base-
lines. 6) We also compare TinyBERT with the 24-
layer MobileBERTTINY, which is distilled from
24-layer IB-BERTLARGE. The results show that
TinyBERT4 achieves the same average score as
the 24-layer model with only 38.7% FLOPs. 7)
When we increase the capacity of our model to
TinyBERT6, its performance can be further ele-
vated and outperforms the baselines of the same
architecture by a margin of 2.6% on average and
achieves comparable results with the teacher. 8)
Compared with the other two-stage baseline PD,
which first pre-trains a small BERT, then performs
distillation on a specific task with this small model,
TinyBERT initialize the student in task-specific
stage via general distillation. We analyze these two
initialization methods in Appendix C.

In addition, BERT-PKD and DistilBERT initial-
ize their student models with some layers of a pre-
trained BERT, which makes the student models
have to keep the same size settings of Transformer
layer (or embedding layer) as their teacher. In our
two-stage distillation framework, TinyBERT is ini-
tialized through general distillation, making it more
flexible in choosing model configuration.

More Comparisons. We demonstrate the effec-
tiveness of TinyBERT by including more base-
lines such as Poor Man’s BERT (Sajjad et al.,
2020), BERT-of-Theseus (Xu et al., 2020) and
MiniLM (Wang et al., 2020), some of which only
report results on the GLUE dev set. In addition,
we evaluate TinyBERT on SQuAD v1.1 and v2.0.
Due to the space limit, we present our results in the
Appendix A and B.

System MNLI-m MNLI-mm MRPC CoLA Avg
TinyBERT4 82.8 82.9 85.8 50.8 75.6
w/o GD 82.5 82.6 84.1 40.8 72.5
w/o TD 80.6 81.2 83.8 28.5 68.5
w/o DA 80.5 81.0 82.4 29.8 68.4

Table 2: Ablation studies of different procedures (i.e.,
TD, GD, and DA) of the two-stage learning framework.
The variants are validated on the dev set.

System MNLI-m MNLI-mm MRPC CoLA Avg
TinyBERT4 82.8 82.9 85.8 50.8 75.6
w/o Embd 82.3 82.3 85.0 46.7 74.1
w/o Pred 80.5 81.0 84.3 48.2 73.5
w/o Trm 71.7 72.3 70.1 11.2 56.3

w/o Attn 79.9 80.7 82.3 41.1 71.0
w/o Hidn 81.7 82.1 84.1 43.7 72.9

Table 3: Ablation studies of different distillation objec-
tives in the TinyBERT learning. The variants are vali-
dated on the dev set.

4.5 Ablation Studies

In this section, we conduct ablation studies to in-
vestigate the contributions of : a) different proce-
dures of the proposed two-stage TinyBERT learn-
ing framework in Figure 1, and b) different distilla-
tion objectives in Equation 11.

4.5.1 Effects of Learning Procedure

The proposed two-stage TinyBERT learning frame-
work consists of three key procedures: GD (Gen-
eral Distillation), TD (Task-specific Distillation)
and DA (Data Augmentation). The performances
of removing each individual learning procedure are
analyzed and presented in Table 2. The results indi-
cate that all of the three procedures are crucial for
the proposed method. The TD and DA has com-
parable effects in all the four tasks. We note that
the task-specific procedures (TD and DA) are more
helpful than the pre-training procedure (GD) on all
of the tasks. Another interesting observation is that
GD contribute more on CoLA than on MNLI and
MRPC. We conjecture that the ability of linguistic
generalization (Warstadt et al., 2019) learned by
GD plays an important role in the task of linguistic
acceptability judgments.

4.5.2 Effects of Distillation Objective

We investigate the effects of distillation objec-
tives on the TinyBERT learning. Several base-
lines are proposed including the learning with-
out the Transformer-layer distillation (w/o Trm),
the embedding-layer distillation (w/o Emb) or the
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prediction-layer distillation (w/o Pred)10 respec-
tively. The results are illustrated in Table 3 and
show that all the proposed distillation objectives
are useful. The performance w/o Trm11 drops
significantly from 75.6 to 56.3. The reason for
the significant drop lies in the initialization of stu-
dent model. At the pre-training stage, obtaining
a good initialization is crucial for the distillation
of transformer-based models, while there is no su-
pervision signal from upper layers to update the
parameters of transformer layers at this stage un-
der the w/o Trm setting. Furthermore, we study
the contributions of attention (Attn) and hidden
states (Hidn) in the Transformer-layer distillation.
We can find the attention based distillation has a
greater impact than hidden states based distillation.
Meanwhile, these two kinds of knowledge distilla-
tion are complementary to each other, which makes
them the most important distillation techniques for
Transformer-based model in our experiments.

4.6 Effects of Mapping Function
We also investigate the effects of different map-
ping functions n = g(m) on the TinyBERT learn-
ing. Our original TinyBERT as described in sec-
tion 4.2 uses the uniform strategy, and we compare
with two typical baselines including top-strategy
(g(m) = m+N −M ; 0 < m ≤M) and bottom-
strategy (g(m) = m; 0 < m ≤M).

The comparison results are presented in Table 4.
We find that the top-strategy performs better than
the bottom-strategy on MNLI, while being worse
on MRPC and CoLA, which confirms the observa-
tions that different tasks depend on the knowledge
from different BERT layers. The uniform strategy
covers the knowledge from bottom to top layers
of BERTBASE, and it achieves better performances
than the other two baselines in all the tasks. Adap-
tively choosing layers for a specific task is a chal-
lenging problem and we leave it as future work.

5 Related Work

Pre-trained Language Models Compression
Generally, pre-trained language models (PLMs)
can be compressed by low-rank approximation (Ma

10The prediction-layer distillation performs soft cross-
entropy as Equation 10 on the augmented data. “w/o Pred”
means performing standard cross-entropy against the ground-
truth of original train set.

11Under “w/o Trm” setting, we actually 1) conduct
embedding-layer distillation at the pre-training stage; 2) per-
form embedding-layer and prediction-layer distillation at fine-
tuning stage.

System MNLI-m MNLI-mm MRPC CoLA Avg
Uniform 82.8 82.9 85.8 50.8 75.6
Top 81.7 82.3 83.6 35.9 70.9
Bottom 80.6 81.3 84.6 38.5 71.3

Table 4: Results (dev) of different mapping strategies
for TinyBERT4.

et al., 2019; Lan et al., 2020), weight sharing (De-
hghani et al., 2019; Lan et al., 2020), knowledge
distillation (Tang et al., 2019; Sanh et al., 2019;
Turc et al., 2019; Sun et al., 2020; Liu et al., 2020;
Wang et al., 2020), pruning (Cui et al., 2019; Mc-
Carley, 2019; F. et al., 2020; Elbayad et al., 2020;
Gordon et al., 2020; Hou et al., 2020) or quantiza-
tion (Shen et al., 2019; Zafrir et al., 2019). In this
paper, our focus is on knowledge distillation.
Knowledge Distillation for PLMs There have
been some works trying to distill pre-trained
language models (PLMs) into smaller models.
BiLSTMSOFT (Tang et al., 2019) distills task-
specific knowledge from BERT into a single-
layer BiLSTM. BERT-PKD (Sun et al., 2019) ex-
tracts knowledges not only from the last layer
of the teacher, but also from intermediate lay-
ers at fine-tuning stage. DistilBERT (Sanh et al.,
2019) performs distillation at pre-training stage
on large-scale corpus. Concurrent works, Mobile-
BERT (Sun et al., 2020) distills a BERTLARGE

augmented with bottleneck structures into a 24-
layer slimmed version by progressive knowledge
transfer at pre-training stage. MiniLM (Wang et al.,
2020) conducts deep self-attention distillation also
at pre-training stage. By contrast, we propose a new
two-stage learning framework to distill knowledge
from BERT at both pre-training and fine-tuning
stages by a novel transformer distillation method.
Pretraining Lite PLMs Other related works aim
at directly pretraining lite PLMs. Turc et al. (2019)
pre-trained 24 miniature BERT models and show
that pre-training remains important in the con-
text of smaller architectures, and fine-tuning pre-
trained compact models can be competitive. AL-
BERT (Lan et al., 2020) incorporates embedding
factorization and cross-layer parameter sharing to
reduce model parameters. Since ALBERT does not
reduce hidden size or layers of transformer block,
it still has large amount of computations. Another
concurrent work, ELECTRA (Clark et al., 2020)
proposes a sample-efficient task called replaced to-
ken detection to accelerate pre-training, and it also
presents a 12-layer ELECTRAsmall that has com-
parable performance with TinyBERT4. Different
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from these small PLMs, TinyBERT4 is a 4-layer
model which can achieve more speedup.

6 Conclusion and Future Work

In this paper, we introduced a new method for
Transformer-based distillation, and further pro-
posed a two-stage framework for TinyBERT. Ex-
tensive experiments show that TinyBERT achieves
competitive performances meanwhile significantly
reducing the model size and inference time of
BERTBASE, which provides an effective way to
deploy BERT-based NLP models on edge devices.
In future work, we would study how to effectively
transfer the knowledge from wider and deeper
teachers (e.g., BERTLARGE) to student TinyBERT.
Combining distillation with quantization/pruning
would be another promising direction to further
compress the pre-trained language models.
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Appendix

A More Comparisons on GLUE

Since some prior works on BERT compression only
evaluate their models on the GLUE dev set, for an
easy and direct comparison, we here compare our
TinyBERT6 with the reported results from these
prior works. All the compared methods have the



System CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B
(8.5k) (393k) (393k) (3.7k) (105k) (364k) (2.5k) (67k) (5.7k)
Mcc Acc Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea

Same Student Architecture (M=6;d′=768;d′i=3072)
DistilBERT6 51.3 82.2 - 87.5/- 89.2 -/88.5 59.9 92.7 -/86.9
Poor Man’s BERT6 - 81.1 - -/80.2 87.6 -/90.4 65.0 90.3 -/88.5
BERT-of-Theseus 51.1 82.3 - 89.0/- 89.5 -/89.6 68.2 91.5 -/88.7
MiniLM6 49.2 84.0 - 88.4/- 91.0 -/91.0 71.5 92.0 -
TinyBERT6 54.0 84.5 84.5 90.6/86.3 91.1 88.0/91.1 73.4 93.0 90.1/89.6

Table 5: Comparisons between TinyBERT with other baselines on the dev set of GLUE tasks. Mcc refers to
Matthews correlation and Pear/Spea refer to Pearson/Spearman.

same model architecture as TinyBERT6 (i.e. M=6,
d′=768, d′i=3072).

The direct comparison results are shown in Ta-
ble 5. We can see the TinyBERT6 outperforms all
the baselines under the same settings of architec-
ture and evaluation methods. The effectiveness of
TinyBERT is further confirmed.

B Results on SQuAD v1.1 and v2.0

We also demonstrate the effectiveness of Tiny-
BERT on the question answering (QA) tasks:
SQuAD v1.1 (Rajpurkar et al., 2016) and SQuAD
v2.0 (Rajpurkar et al., 2018). Following the learn-
ing procedure in the previous work (Devlin et al.,
2019), we treat these two tasks as the problem of
sequence labeling which predicts the possibility
of each token as the start or end of answer span.
One small difference from the GLUE tasks is that
we perform the prediction-layer distillation on the
original training dataset instead of the augmented
dataset, which can bring better performances.

The results show that TinyBERT consistently
outperforms both the 4-layer and 6-layer baselines,
which indicates that the proposed framework also
works for the tasks of token-level labeling. Com-
pared with sequence-level GLUE tasks, the ques-
tion answering tasks depend on more subtle knowl-
edge to infer the correct answer, which increases
the difficulty of knowledge distillation. We leave
how to build a better QA-TinyBERT as future work.

C Initializing TinyBERT with BERTTINY

In the proposed two-stage learning framework,
to make TinyBERT effectively work for different
downstream tasks, we propose the General Distilla-
tion (GD) to capture the general domain knowledge,
through which the TinyBERT learns the knowledge

System SQuAD 1.1 SQuAD 2.0
EM F1 EM F1

BERTBASE (Teacher) 80.7 88.4 74.5 77.7
4-layer student models
BERT4-PKD 70.1 79.5 60.8 64.6
DistilBERT4 71.8 81.2 60.6 64.1
MiniLM4 - - - 69.7
TinyBERT4 72.7 82.1 68.2 71.8
6-layer student models
BERT6-PKD 77.1 85.3 66.3 69.8
DistilBERT6 78.1 86.2 66.0 69.5
MiniLM6 - - - 76.4
TinyBERT6 79.7 87.5 74.7 77.7

Table 6: Results (dev) of baselines and TinyBERT
on question answering tasks. The architecture of
MiniLM4 is (M=4, d=384, di=1536) which is wider
than TinyBERT4, and the architecture of MiniLM6 is
the same as TinyBERT6(M=6, d=768, di=3072)

System MNLI-m MNLI-mm MRPC CoLA Avg
(392k) (392k) (3.5k) (8.5k)

BERTTINY 75.9 76.9 83.2 19.5 63.9
BERTTINY(+TD) 79.2 79.7 82.9 12.4 63.6
TinyBERT (GD) 76.6 77.2 82.0 8.7 61.1
TinyBERT (GD+TD) 80.5 81.0 82.4 29.8 68.4

Table 7: Results of different methods at pre-training
stage. TD and GD refers to Task-specific Distillation
(without data augmentation) and General Distillation,
respectively. The results are evaluated on dev set.

from intermediate layers of teacher BERT at the
pre-training stage. After that, a general TinyBERT
is obtained and used as the initialization of stu-
dent model for Task-specific Distillation (TD) on
downstream tasks.

In our preliminary experiments, we have also
tried to initialize TinyBERT with the directly pre-
trained BERTTINY, and then conduct the TD
on downstream tasks. We denote this compres-
sion method as BERTTINY(+TD). The results
in Table 7 show that BERTTINY(+TD) performs



even worse than BERTTINY on MRPC and CoLA
tasks. We conjecture that if without imitating the
BERTBASE’s behaviors at the pre-training stage,
BERTTINY will derive mismatched distributions in
intermediate representations (e.g., attention matri-
ces and hidden states) with the BERTBASE model.
The following task-specific distillation under the
supervision of fine-tuned BERTBASE will fur-
ther disturb the learned distribution/knowledge of
BERTTINY, finally leading to poor performances
on some less-data tasks. For the intensive-data
task (e.g. MNLI), TD has enough training data to
make BERTTINY acquire the task-specific knowl-
edge very well, although the pre-trained distribu-
tions have already been disturbed.

From the results of Table 7, we find that GD can
effectively transfer the knowledge from the teacher
BERT to the student TinyBERT and achieve compa-
rable results with BERTTINY (61.1 vs. 63.9), even
without performing the MLM and NSP tasks. Fur-
thermore, the task-specific distillation boosts the
performances of TinyBERT by continuing on learn-
ing the task-specific knowledge from fine-tuned
teacher BERTBASE.

D GLUE Details

The GLUE datasets are described as follows:
MNLI. Multi-Genre Natural Language Inference
is a large-scale, crowd-sourced entailment classi-
fication task (Williams et al., 2018). Given a pair
of 〈premise, hypothesis〉, the goal is to predict
whether the hypothesis is an entailment, contra-
diction, or neutral with respect to the premise.
QQP. Quora Question Pairs is a collection of ques-
tion pairs from the website Quora. The task is to
determine whether two questions are semantically
equivalent (Chen et al., 2018).
QNLI. Question Natural Language Inference is
a version of the Stanford Question Answering
Dataset which has been converted to a binary sen-
tence pair classification task by Wang et al. (2018).
Given a pair 〈question, context〉. The task is to
determine whether the context contains the answer
to the question.
SST-2. The Stanford Sentiment Treebank is a
binary single-sentence classification task, where
the goal is to predict the sentiment of movie re-
views (Socher et al., 2013).
CoLA. The Corpus of Linguistic Acceptability is
a task to predict whether an English sentence is a
grammatically correct one (Warstadt et al., 2019).

STS-B. The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and many other domains (Cer et al.,
2017). The task aims to evaluate how similar two
pieces of texts are by a score from 1 to 5.
MRPC. Microsoft Research Paraphrase Corpus is
a paraphrase identification dataset where systems
aim to identify if two sentences are paraphrases of
each other (Dolan and Brockett, 2005).
RTE. Recognizing Textual Entailment is a binary
entailment task with a small training dataset (Ben-
tivogli et al., 2009).


