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We enhance auto-regressive language models by conditioning on document chunks retrieved from a
large corpus, based on local similarity with preceding tokens. With a 2 trillion token database, our
Retrieval-Enhanced Transformer (Retro) obtains comparable performance to GPT-3 and Jurassic-1
on the Pile, despite using 25× fewer parameters. After fine-tuning, Retro performance translates to
downstream knowledge-intensive tasks such as question answering. Retro combines a frozen Bert
retriever, a differentiable encoder and a chunked cross-attention mechanism to predict tokens based on
an order of magnitude more data than what is typically consumed during training. We typically train
Retro from scratch, yet can also rapidly Retrofit pre-trained transformers with retrieval and still
achieve good performance. Our work opens up new avenues for improving language models through
explicit memory at unprecedented scale.

1. Introduction

Language modelling (LM) is an unsupervised task that consists of modelling the probability of text,
usually by factorising it into conditional next-token predictions 𝑝(𝑥1, . . . , 𝑥𝑛) =

∏
𝑖 𝑝(𝑥𝑖 |𝑥<𝑖). Neural

networks have proven to be powerful language models, first in the form of recurrent architectures
(Graves, 2013; Jozefowicz et al., 2016; Mikolov et al., 2010) and more recently in the form of
Transformers (Vaswani et al., 2017), that use attention to contextualise the past. Large performance
improvements have come from increasing the amount of data, training compute, or model parameters.
Transformers have been scaled from 100 million parameter models in seminal work to over hundred
billion parameters (Brown et al., 2020; Radford et al., 2019) in the last two years which has led to
models that do very well on a wide array of tasks in a zero or few-shot formulation. Increasing model
size predictably improves performance on a wide range of downstream tasks (Kaplan et al., 2020).
The benefits of increasing the number of parameters come from two factors: additional computations
at training and inference time, and increased memorization of the training data.

In this work, we endeavor to decouple these, by exploring efficient means of augmenting language
models with a massive-scale memory without significantly increasing computations. Specifically, we
suggest retrieval from a large text database as a complementary path to scaling language models.
Instead of increasing the size of the model and training on more data, we equip models with the
ability to directly access a large database to perform predictions—a semi-parametric approach. At
a high level, our Retrieval Transformer (Retro) model splits the input sequence into chunks and
retrieves text similar to the previous chunk to improve the predictions in the current chunk. Existing
retrieval for language modelling work only considers small transformers (100 millions parameters)
and databases of limited size (up to billions of tokens) (Guu et al., 2020; Khandelwal et al., 2020;
Lewis et al., 2020; Yogatama et al., 2021). To our knowledge, our work is the first to show the benefits
of scaling the retrieval database to trillions of tokens for large parametric language models. Our main

Corresponding authors: {sborgeaud|amensch|jordanhoffmann|sifre}@deepmind.com

ar
X

iv
:2

11
2.

04
42

6v
3 

 [
cs

.C
L

] 
 7

 F
eb

 2
02

2

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Improving language models by retrieving from trillions of tokens

200 400 800 1600 7500
Number of Non-Embedding Params (M)

0.7

0.8

0.9

1.0

C4
 E

va
l b

its
-p

er
-b

yt
e

172M 425M 1.5B 7.5B Baseline RETRO [OFF] RETRO [ON]

0 1 10 100 1000 10000
Retrieval dataset (B Tokens)

0.7

0.8

0.9

1.0

0 1 3 5 10 30 50 100
Number of neighbors

0.7

0.8

0.9

1.0

Figure 1 | Scaling of Retro. The performance gain of our retrieval models remains constant with
model scale (left), and is comparable to multiplying the parameteric model size by ∼ 10×. The gain
increases with the size of the retrieval database (middle) and the number of retrieved neighbours
(right) on the C4 validation set, when using up to 40 neighbours. Past this, performance begins to
degrade, perhaps due to the reduced quality. At evaluation Retro can be used without retrieval
data (Retro[OFF]), bringing limited performance degradation compared to baseline transformers.

contributions are the following.

• We introduce Retro, a retrieval-enhanced autoregressive language model (§2.2). We use a
chunked cross-attention module to incorporate the retrieved text (§2.4), with time complexity
linear in the amount of retrieved data. We show that retrieving based on a pre-trained frozen
Bert model (§2.3) works at scale, removing the need for training and updating a retriever
network.

• We show that our method scales well with model size and database size (Fig. 1): Retro
provides a constant gain for models ranging from 150M to 7B parameters, and Retro can be
improved at evaluation time by increasing the database size and the number of retrieved neigh-
bours. Our largest model obtains state-of-the-art results on a range of downstream evaluation
datasets including Wikitext103 (Merity et al., 2017) and the Pile (Gao et al., 2020) (§4). We
show that Retro can be fine-tuned to achieve competitive performance on downstream tasks
such as question answering (§4.3).

• We propose an evaluation aware of proximity of test documents with the training set (§2.6),
addressing the problem of test set leakage (Lee et al., 2021). This is relevant for all language
models, and especially for retrieval-enhanced models since they have direct access to the training
dataset during evaluation. Using this methodology, we show that the performance of Retro
comes from both explicit neighbour copying and general knowledge extraction (§4.4).

2. Method

We design our retrieval-enhanced architecture to be capable of retrieving from a database with trillions
of tokens. For this purpose, we retrieve at the level of contiguous token chunks instead of individual
tokens which reduces storage and computation requirements by a large linear factor. Our method first
constructs a key-value database, where values store raw chunks of text tokens and keys are frozen
Bert embedddings (Devlin et al., 2019). We use a frozen model to avoid having to periodically
re-compute embeddings over the entire database during training. Each training sequence is then split
into chunks, which are augmented with their 𝑘-nearest neighbour retrieved from the database. An
encoder-decoder architecture integrates retrieval chunks into the model’s predictions. We summarize
the Retro architecture in Fig. 2, and detail it in this section. We end the section by introducing
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Figure 2 | Retro architecture. Left: simplified version where a sequence of length 𝑛 = 12 is split
into 𝑙 = 3 chunks of size 𝑚 = 4. For each chunk, we retrieve 𝑘 = 2 neighbours of 𝑟 = 5 tokens each. The
retrieval pathway is shown on top. Right: Details of the interactions in the Cca operator. Causality is
maintained as neighbours of the first chunk only affect the last token of the first chunk and tokens
from the second chunk.

a new methodology to evaluate language models when an evaluation set is partially present in the
training set.

2.1. Training dataset

We use a multi-lingual version of MassiveText (Rae et al., 2021) for both training and retrieval data.
The dataset consists of text documents from multiple sources and multiple languages totalling over
5 trillion tokens (detailed in Table 1). Sequences are sampled from subsets of the training data,
with sampling weights given in the right-most column of Table 1. We tokenize the dataset using
SentencePiece (Kudo and Richardson, 2018) with a vocabulary of 128,000 tokens. During training
(unless otherwise specified), we retrieve from 600B tokens from the training data. The training
retrieval database is made of the same subsets as the training data, in proportion that matches
the training sampling frequencies. During evaluation the retrieval database consists in the full
union of these datasets, with the exception of books for which we use a sub-sample of 4%. The
evaluation retrieval database thus contains 1.75T tokens. To limit test set leakage, we compute the
13-gram Jaccard similarity between train and test documents using the MinHash scheme and remove
all training documents with high similarity (0.8 or higher) to a validation or test set document.
Additionally, we remove all validation and test articles from Wikitext103 (Merity et al., 2017) from
our Wikipedia training data.

2.2. Retrieval-enhanced autoregressive token models

Our approach uses retrieval as a way to augment input examples at the granularity of small chunks
of tokens. Formally, we consider sequences of integer tokens in 𝕍 = [1, 𝑣], obtained using a text
tokenizer1. We split each 𝑛-token-long example 𝑋 = (𝑥1, . . . , 𝑥𝑛) into a sequence of 𝑙 chunks (𝐶1, . . . , 𝐶𝑙)
of size 𝑚 = 𝑛

𝑙
, i.e. 𝐶1 , (𝑥1, . . . , 𝑥𝑚), . . . , 𝐶𝑙 ,(𝑥𝑛−𝑚+1, . . . , 𝑥𝑛) ∈ 𝕍𝑚. We use 𝑛 = 2048 and 𝑚 = 64.

We augment each chunk 𝐶𝑢 with a set RetD (𝐶𝑢) of 𝑘 neighbours from the database D. RetD (or
1We use the notation [1, 𝑣] , {1, . . . , 𝑣} throughout the text.
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Ret for brevity) is a non-trainable operator specified in §2.3. Token likelihoods are provided by a
model, parameterized by 𝜃, that takes as input both previous tokens and their retrieved neighbours.
This defines the following retrieval-enhanced sequence log-likelihood:

𝐿 (𝑋 |𝜃,D) ,
𝑙∑︁

𝑢=1

𝑚∑︁
𝑖=1

�𝜃
(
𝑥 (𝑢−1) 𝑚+𝑖 | (𝑥 𝑗) 𝑗< (𝑢−1) 𝑚+𝑖, (RetD (𝐶𝑢′))𝑢′<𝑢

)
. (1)

We set Ret (𝐶1) = ∅, namely the likelihood of tokens from the first chunk does not depend on
any retrieval data. This likelihood definition preserves autoregressivity: the probability of the 𝑖-th
token of the 𝑢-th chunk, 𝑥 (𝑢−1)𝑚+𝑖, only depends on previously seen tokens (𝑥 𝑗)16 𝑗< (𝑢−1)𝑚+𝑖 and on the
data retrieved from the previous chunks (Ret (𝐶𝑢′))𝑢′<𝑢. We can therefore directly sample with log-
probability �, where sampling within the chunk 𝐶𝑢 is conditioned on the neighbours (Ret (𝐶𝑢′))𝑢′<𝑢.
This makes retrieval-enhanced models directly comparable with the largest language models that are
evaluated by sampling.

2.3. Nearest neighbour retrieval

Retrieval neighbours. Our database consists of a key-value memory. Each value consists of two
contiguous chunks of tokens which we denote [𝑁, 𝐹] where 𝑁 is the neighbour chunk which is used
to compute the key, and 𝐹 is its continuation in the original document. The corresponding key is
the Bert embedding of 𝑁, averaged over time, that we denote Bert (𝑁). For each chunk 𝐶, we
retrieve its approximate 𝑘-nearest neighbours from our key-value database using the 𝐿2 distance
on BERT embeddings 𝑑(𝐶, 𝑁) = | |Bert (𝐶) − Bert (𝑁) | |22. The model receives the corresponding
values Ret (𝐶) , ( [𝑁1, 𝐹1], . . . , [𝑁𝑘, 𝐹𝑘]). Both neighbour chunks and their continuations provide
meaningful improvements, as illustrated in our ablation study (Appendix D). We use a length 64 for
both 𝑁 𝑗 and 𝐹 𝑗, thus Ret (𝐶) has a shape of 𝑘 × 𝑟 with 𝑟 = 128. To avoid retrieving the chunk 𝐶𝑢+1
in the retrieval set Ret (𝐶𝑢), which would break causality during training, we filter out neighbours
originating from the same document as the training sequence 𝑋 .

For a database of 𝑇 elements, we can query the approximate nearest neighbours in O(log𝑇) time.
We use the SCaNN library (Guo et al., 2020) to achieve this. This means that we can query our
2 trillion token database in 10ms whilst evaluating or sampling from the model; this expense is
amortized over a chunk length. Performing retrieval on-the-fly is too slow to keep up with the training
calculations—we leverage the frozen aspect of the embedding operator Bert to precompute all
approximate nearest neighbours and save the results as part of the data. In Fig. 9 in the Appendix, we
show results where we only retrieve neighbours within Wikipedia. We find that neighbours tend to
come from 2-3 links away from a given article whereas random articles are more than 5 links apart.

Table 1 |MassiveText. The last column indicates the sampling weight during training. Themultilingual
subsets include documents in 10 languages. The full breakdown is given in §A.1.

Source Token count (M) Documents (M) Multilingual Sampling frequency
Web 977,563 1,208 Yes 55%
Books 3,423,740 20 No 25%
News 236,918 398 No 10%

Wikipedia 13,288 23 Yes 5%
GitHub 374,952 143 No 5%
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2.4. Retro model architecture

Our model relies on an encoder-decoder transformer architecture, integrating the retrieved data
through a cross-attention mechanism as introduced in Vaswani et al. (2017). First, the retrieved
tokens Ret (𝐶) are fed into an encoder Transformer, which computes the encoded neighbours set 𝐸.
Denoting the intermediate activations by 𝐻, our transformer decoder then interleaves Retro-blocks
Retro (𝐻, 𝐸) and standard Transformer blocks LM (𝐻) (the hyperparameter 𝑃 ⊆ [1, 𝐿] determines at
which layers we use a Retro-block). These blocks are built from three different residual operators
with signature ℝ𝑛×𝑑 → ℝ𝑛×𝑑: a fully-connected layer Ffw, the standard sequence-level self-attention
layer Attn, and a chunked cross-attention layer Cca (·, 𝐸) that incorporates information from the
retrieval encoder:

Retro (𝐻, 𝐸) , Ffw (Cca (Attn (𝐻) , 𝐸)) , and Lm (𝐻) , Ffw (Attn (𝐻)) (2)

Since Ffw, Attn and Cca are all autoregressive operators whose output at position 𝑖 only
depends on (ℎ 𝑗) 𝑗6𝑖, any succession of Retro and lm layers, followed by a token classification
head defines an autoregressive log-likelihood (1). An overview of the model architecture is given in
Algorithm 1 and in Fig. 2. We next describe the retrieval encoder and the chunked cross-attention
layer in more detail, and explain how to sample from Retro.

Encoding retrieval neighbours. For each chunk 𝐶𝑢, the 𝑘 retrieval neighbours Ret (𝐶𝑢) are fed into
a bi-directional transformer Encoder, yielding the outputs 𝐸 𝑗𝑢 , Encoder (Ret (𝐶𝑢) 𝑗, 𝐻𝑢) ∈ ℝ𝑟×𝑑′,
where 𝑗 ∈ [1, 𝑘] indexes each neighbour. The retrieval encoder is a non-causal transformer. It
is conditioned on 𝐻𝑢, the activations of chunk 𝐶𝑢, through cross-attention layers; this allows the
representations of the retrieval encoder to be modulated by the retrieving chunk in a differentiable
way. More precisely, the encoding of the 𝑗th neighbour of the 𝑢th chunk, Ret (𝐶𝑢) 𝑗, depends on the
attended activation 𝐻𝑢 , (ℎ(𝑢−1)𝑚+𝑖) 𝑖∈[1,𝑚] ∈ ℝ𝑚×𝑑 of chunk 𝐶𝑢 at layer min(𝑃). All neighbours for
all chunks are encoded in parallel, yielding a full encoded set 𝐸 , (𝐸 𝑗𝑢)𝑢∈[1,𝑙], 𝑗∈[1,𝑘] ∈ ℝ𝑙×𝑘×𝑟×𝑑′. We
denote 𝐸𝑢 ∈ ℝ𝑘×𝑟×𝑑′ as the encoded neighbours for chunk 𝑢 ∈ [1, 𝑙].

Chunked cross-attention. To perform the Cca operation, we first split a given intermediate acti-
vation 𝐻 ∈ ℝ𝑛×𝑑 into 𝑙−1 attending chunks

(
𝐻+𝑢 , (ℎ𝑢𝑚+𝑖−1) 𝑖∈[1,𝑚] ∈ ℝ𝑚×𝑑

)
𝑢∈[1,𝑙−1]

, as depicted on the
right of Fig. 2. 𝐻+𝑢 holds the intermediary embeddings of the last token in chunk 𝐶𝑢 and of the first
𝑚 − 1 tokens in 𝐶𝑢+1 2. We compute the cross-attention between 𝐻+𝑢 and 𝐸𝑢—the encoded retrieval
set obtained from chunk 𝐶𝑢. Attention is computed across time and across neighbours simultaneously,
as we merge the neighbour and time dimensions of 𝐸𝑢 before applying cross-attention. Since there
is a notion of alignment between data chunks and retrieval neighbours, we use relative positional
encodings as described in §B.1.2.

We concatenate the 𝑙−1 outputs of the per-chunk cross-attentions (each of shape 𝑚 × 𝑑) across
time, and properly pad the result; we thus form the output activation Cca (𝐻, 𝐸) ∈ ℝ𝑛×𝑑. Formally,
for each chunk 𝐶𝑢 and for each token 𝑖 ∈ [1, 𝑚] we set

Cca (𝐻, 𝐸)𝑢𝑚+𝑖−1 , Ca (ℎ𝑢𝑚+𝑖−1, 𝐸𝑢), (3)
2The last token of chunk 𝐶𝑢 is the first to be able to access the retrieved content 𝐸𝑢 while maintaining autoregressivity

in (1). Hence, there is a one token overlap between chunk 𝐶𝑢 =

(
𝑥 (𝑢−1)𝑚+𝑖

)
𝑖∈[1,𝑚]

and the corresponding attending chunk
𝐶+𝑢 , (𝑥𝑢𝑚+𝑖−1) 𝑖∈[1,𝑚] .
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Algorithm 1: Overview of Retro model architecture.
Hyperparam: 𝑃 and 𝑃enc, indices of layers with cross-attention in the decoder and encoder
respectively
Hyperparam: 𝐿 and 𝐿enc, number of decoder layers and number of encoder layers.
Input: 𝑋 ∈ 𝕍𝑛: sequence of tokens. (Ret (𝐶𝑢))16𝑢6𝑙: the retrieved neighbours
Output: 𝑂 ∈ ℝ𝑛×|𝕍 |: the output logits

def Encoder (Ret (𝐶𝑢)16𝑢6𝑙, 𝐻):
(𝐻𝑢)𝑢∈[1,𝑙] ← Split (𝐻)
for 𝑗 ∈ [1, 𝑘], 𝑢 ∈ [1, 𝑙] do // Encoder shared across neighbours and chunks

𝐸
𝑗
𝑢 = Embenc(Ret (𝐶𝑢) 𝑗) // May be shared with the decoder E M B

for 𝑝′ ∈ [1, 𝐿enc] do
𝐸
𝑗
𝑢 ← Attnenc(𝐸 𝑗𝑢) // Bi-directional attention

if 𝑝′ ∈ 𝑃enc then
𝐸
𝑗
𝑢 ← Caenc(𝐸 𝑗𝑢, 𝐻𝑢)

𝐸
𝑗
𝑢 ← Ffwenc(𝐸 𝑗𝑢)

return 𝐸

𝐻 ← Emb (𝑋)
for 𝑝 ∈ [1, 𝐿] do

𝐻 ← Attn (𝐻) // Causal attention

if 𝑝 = min(𝑃) then
// The neighbour E N C O D E R is conditioned with the decoder activations of

the last layer before the first cross-attention

𝐸 = Encoder (Ret (𝐶𝑢)16𝑢6𝑙, 𝐻)
if 𝑝 ∈ 𝑃 then

𝐻 ← Cca (𝐻, 𝐸)
𝐻 ← Ffw (𝐻)

𝑂← Read (𝐻)

where Ca is the cross-attention residual operator over time-concatenated encoded neighbours. We
recall that this operator is defined in its simplest version by three parameter matrices 𝐾 ∈ ℝ𝑑×𝑐, 𝑄 ∈
ℝ𝑑×𝑐 and 𝑉 ∈ ℝ𝑑×𝑑. For all ℎ ∈ ℝ𝑑 and 𝑌 ∈ ℝ𝑇×𝑑, we define

Ca (ℎ, 𝑌 ) , softmax(𝑌𝐾𝑄𝑇ℎ)𝑌𝑉, (4)
where the softmax is performed on the second dimension and all products are matrix products. We
use multi-head cross-attention, and add positional encodings to the softmax(see §B.1.2).

The first 𝑚 − 1 tokens cannot attend to any neighbour of a previous chunk; at these positions, we
define Cca as the identity, setting Cca (𝐻, 𝐸) 𝑗 , ℎ 𝑗 for all tokens 𝑗 ∈ [1, 𝑚 − 1]. Finally, the last token
ℎ𝑙𝑚 attends to the last retrieval set 𝐸𝑙 and we set ℎ𝑙 𝑚 , Ca (ℎ𝑙 𝑚, 𝐸𝑙) (not shown in Fig. 2). Listing 1
contains a simplified implementation of Cca. Note that chunked cross-attention is autoregressive:
the output of Cca at position 𝑖 depends on the sequence from tokens from 0 to 𝑖 that is input to Cca.

With Retro models, even though each Cca cross-attention attends only to the neighbours of
the preceding chunk Ret (𝐶𝑢−1), the dependencies over previous neighbours are propagated via the
self-attention operations. The activations of the 𝑖th token in the 𝑢th chunk therefore potentially depend
upon the set of all previous neighbours Ret (𝐶𝑢′)𝑢′<𝑢, without incurring the quadratic cost of cross
attending to that set.
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Sampling. When sampling, at the end of a chunk 𝐶𝑢, we use SCaNN to retrieve neighbours Ret (𝐶𝑢),
based on the embedding Bert (𝐶𝑢). The encoded neighbours 𝐸𝑢 = Encoder (Ret (𝐶𝑢)) are then
used to condition the generation of the next chunk 𝐶𝑢+1, which we do incrementally: overall the
cost of sampling is thus quadratic in the size of the sampled sequence, as when sampling from
regular Transformers; the added cost of retrieval is linear in the number of chunks 𝑙, and is negligible
compared to the token sampling cost in practice.

2.5. Baseline Transformer architecture

We use a transformer (Vaswani et al., 2017) similar to the one described in (Radford et al., 2019),
with some minimal changes: we replace LayerNorm with RMSNorm (Zhang and Sennrich, 2019) and
use relative position encodings (Dai et al., 2019). As baselines, we train retrieval-free transformers
with 132M, 368M, 1.3B and 7.0B parameters (embedding matrices are excluded from parameter
counts). The hyperparameters we used are detailed in Table 2. All retrieval models use the same
size encoder for the retrieval data, with 𝑑 ′ = 896 and 2 layers, which roughly adds 19𝑀 parameters.
The encoder uses relative positional encodings. The retrieval models contain one Retro-block every
3 blocks, starting from layer 6. For our smallest model, Cca is applied in layers 6, 9 and 12 of the
main pathway and also once for query conditioning in the encoder, which adds an additional 12𝑀
parameters. The relative number of extra parameters reduces as we increase the baseline model size.
All models are implemented using JAX (Bradbury et al., 2018) and Haiku (Hennigan et al., 2020).

2.6. Quantifying dataset leakage exploitation

Retro models may arguably benefit more easily from evaluation dataset leakage, i.e. the fact that
we evaluate on data that were also present in the training set. To better understand how retrieval
improves language modelling performance, we therefore quantify evaluation likelihood as a function
of the overlap between the evaluation and training datasets.

The following approach can be used with any language model, and depends only on the frozen
retriever system presented in §2.3. We split the evaluation sequences (𝑋𝑖) 𝑖 into chunks of length
𝑚 ≤ 64, and we see the training data as a set of chunks C. For each evaluation chunk 𝐶 ∈ C, we
retrieve the 10 closest neighbours (of length up to 128) in the training data. We then compute the
longest token substring common to both the evaluation chunk and its neighbours. This gives a number
𝑠 ∈ [0, 𝑚]. The value 𝑟(𝐶) = 𝑠

𝑚
, ranging from 0 (chunk never seen) to 1 (chunk entirely seen), gives a

reliable indication of how much overlap there is between the evaluation chunk and the training data.
For a given model, we then obtain the log-likelihood �(𝐶) of each chunk 𝐶, and the number of bytes
𝑁 (𝐶) it encodes. We then consider the filtered bits-per-bytes of the model:

∀𝛼 ∈ [0, 1], C𝛼 , {𝐶 ∈ C, 𝑟(𝐶) 6 𝛼}, bpb(𝛼) ,
∑
𝐶∈C𝛼 �(𝐶)∑
𝐶∈C𝛼 𝑁 (𝐶)

, (5)

Table 2 | Number of parameters for our baseline and Retro models, excluding embeddings, along
with the corresponding hyperparameters.

Baseline parameters Retro 𝑑 𝑑ffw # heads Head size # layers
132M 172M (+30%) 896 3,584 16 64 12
368M 425M (+15%) 1,536 6,144 12 128 12

1,309M 1,451M (+11%) 2,048 8,192 16 128 24
6,982M 7,532M (+8%) 4,096 16,384 32 128 32
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which correspond to the bits-per-bytes on the set of chunks that overlap less than 𝛼% with the training
chunks. Note that the full evaluation bit-per-bytes performance is recovered by bpb(1). The function
bpb(·) allows us to evaluate the impact of evaluation leakage over predictive performance: for low 𝛼,
bpb(𝛼) gives an indication on how the model performs on chunks that are entirely new; the slope of
bpb(·) shows how much the model exploits evaluation leakage.

3. Related Work

We first review existing work on using retrieval for language modelling, and compare Retro to these
works (see Table 3). As we train Retro models on a large dataset containing a substantial section
of the internet, our work raises potential privacy, safety, and fairness issues that we then review.

3.1. Retrieval for language modelling

Brants et al. (2007) show that scaling the training data to trillions of tokens improves the machine
translation performance of 𝑛-gram models. More recently, GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020), and Jurassic-1 (Lieber et al., 2021) show that scaling up language models leads to
massive improvements on many downstream tasks. At the same time, Carlini et al. (2021) demonstrate
that large-scale language models can perfectly memorise parts of their training data, suggesting that
enhancing models with retrieval may lead to further improvements. However, significant leakage
between train and test datasets (Lee et al., 2021; Lewis et al., 2021) makes comparing and evaluating
large models trained on large datasets difficult, especially once retrieval capabilities over the training
dataset are added.

Historically, information retrieval for text relies on inverted index matching such as TF-IDF and
BM25 (Robertson and Zaragoza, 2009). Foundational work use latent topic modelling approaches
like LDA (Blei et al., 2003) to identify relevant neighbours (Wei and Croft, 2006). Work in machine
translation such as Zhang et al. (2018) and Gu et al. (2018) retrieve translation pairs based on edit
distance between source sentences and guide the translation output using the closest retrieved target
sentences. The retrieval database may also be structured — for example, Ahn et al. (2016) use a
symbolic knowledge graph to improve an RNN language model.

With the success of deep learning, retrieving systems have partly switched to dense learned
representations based on a neural network’s activations. Continuous cache (Grave et al., 2017)
adds probability mass to tokens for which previous activations resemble the current activation
vector, extending the model’s context to the local history. 𝑘NN-LM (Khandelwal et al., 2020) applies
this idea to transformers and extends the retrieval database to English Wikipedia, resulting in

Table 3 | Comparison of Retro with existing retrieval approaches.

# Retrieval tokens Granularity Retriever training Retrieval integration
Continuous Cache O

(103) Token Frozen (LSTM) Add to probs
𝑘NN-LM O

(109) Token Frozen (Transformer) Add to probs
Spalm O

(109) Token Frozen (Transformer) Gated logits
Dpr O

(109) Prompt Contrastive proxy Extractive QA
Realm O

(109) Prompt End-to-End Prepend to prompt
RAG O

(109) Prompt Fine-tuned Dpr Cross-attention
FiD O

(109) Prompt Frozen Dpr Cross-attention
Emdr2 O

(109) Prompt End-to-End (EM) Cross-attention
Retro (ours) O

(
1012

)
Chunk Frozen (Bert) Chunked cross-attention

8



Improving language models by retrieving from trillions of tokens

substantial improvements on Wikitext103 evaluation. Continuous cache and 𝑘NN-LM do not modify
the underlying neural-network models, but interpolate at inference between the language model’s
output and distributions computed from retrieved tokens. These methods can therefore be plugged
into any model without additional training, although this limits the model’s ability to reason about
the retrieved text. Spalm (Yogatama et al., 2021) addresses this limitation by adding an extra gating
network to post-process the retrieved data; yet most of the network is unaffected by the retrieval
during inference.

The retrieval representations may be trained directly instead of relying on a pre-trained model—
retriever systems have been developed for this purpose, primarily on open-domain question answering.
For example, Dpr (Karpukhin et al., 2020) trains two Bert models (for queries and keys respectively)
using a contrastive loss to align the representations of a question and of its answers. Lee et al. (2019)
use an inverse cloze task to find semantic representations of passages for retrieval. These works differs
from continuous cache and 𝑘NN-LM in that they embeds passages (or chunks) of text together, as
opposed to each token individually. The retriever network is trained in isolation of the downstream
task that uses the retrieval data. This potential issue is specifically addressed by Realm (Guu et al.,
2020), which trains the retrieval system end-to-end to maximize the final training cross-entropy. This
comes with the extra complexity of searching the database during training and periodically updating
the embedding table, severely limiting the scale at which it can operate. RAG (Lewis et al., 2020)
and FiD (Izacard and Grave, 2021) build upon Dpr to set the state of the art on question answering
benchmarks by training encoder-decoder transformer models. More recently, Emdr2 (Sachan et al.,
2021) extends FiD by using an expectation-maximization algorithm to train the retriever end-to-end
and achieves state of the art results compared to similarly sized models.

In the open-domain dialogue setting, BlenderBot 2.0 (Komeili et al., 2021) learns to issue textual
internet queries, outperforming dense retrieval methods when evaluated on a task measuring how
close model responses are to those of humans. This involves collecting a dataset of human dialogues
with associated search queries, which limits the scalability of this approach. Hashemi et al. (2020)
introduce the Guided Transformer, a modified Transformer similar to Retro, for document retrieval
and clarifying question selection. Although effective on question answering and other tasks with
strong conditioning, none of these methods are designed to model arbitrary text sequences, in contrast
with Retro.

Retro shares components with 𝑘NN-LM and Dpr in that it uses frozen retrieval representations.
Retro models longer sequences than QA examples; this requires to reason at a sub-sequence level,
and to retrieve different documents for the different chunks of a sequence. Similar to FiD, Retro
processes the retrieved neighbours separately in the encoder, and assemble them in the chunked
cross-attention. This differs from e.g. Realm, that prepends retrieved documents to the prompt.
Using chunks allows for repeated retrieval whilst generating a sequence as opposed to retrieving
only once based on the prompt alone. Furthermore, retrieval is done during the whole pre-training
process in Retro, and is not simply plugged-in to solve a certain downstream task. Finally, previous
methods based on dense query vectors use small models and retrieval datasets with less than 3B
tokens (English Wikipedia). Table 3 summarizes the difference of Retro with existing approaches.

3.2. Privacy, safety and fairness

Bender et al. (2021); Weidinger et al. (2021) highlight several dangers of large language models.
Those stem from their ability to memorise training data, their high training cost, the static nature
of their training data (Lazaridou et al., 2021), their tendency of amplifying inherent biases in the
training data, and their ability to generate toxic language (Gehman et al., 2020). In this section we
inspect these dangers, focusing on how retrieval augmented language models may exacerbate or

9
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mitigate them.
Large language models can perfectly memorise parts of their training data (Carlini et al., 2021).

When coupled with large training datasets gathered from the web or other sources, this has clear
privacy and safety implications. Retrieval models such as Retro that have access to the entire training
dataset during inference exacerbate these privacy issues by being able to directly copy training data.
However, retrieval systems offer a path towards mitigating these concerns via obliteration of the
retrievable data at inference time. In addition, differential privacy training (Abadi et al., 2016) of
retrieval models could guarantee that no private information is stored in the model weights, while
individualisation on private data could be made by updating the retrieval database at inference time.

Due to their high training cost, re-training large language model regularly to incorporate new
data, languages, and norms is prohibitively expensive. To keep retrieval models up-to-date, it may be
sufficient to update the retrieval database, which is orders of magnitude cheaper than re-training
a model from scratch. In addition to the benefits of updating models in terms of fairness and bias,
simply training large language models has a significant energy cost (Schwartz et al., 2020; Strubell
et al., 2019). Retrieval mechanisms offer a path to reducing the compute requirements needed to
train and update language models that reach a certain performance.

Large language models are prone to generating toxic outputs, as shown in Gehman et al. (2020).
Bender et al. (2021); Jo and Gebru (2020) advocate for the importance of better training data curation
and documentation. Additionally, if portions of the training data are found to be eliciting biased or
toxic outputs after training, retrieval allows for some correction, as the offending retrieval data can
be retroactively filtered. However, it is also the case that without careful analysis and intervention,
retrieval models may exacerbate biases that are present in the training data. Retrieval models can
also add a further source of bias through the selection mechanism for retrieval documents. Further
work in this area is required to better understand how retrieval affects the bias and toxicity of the
model outputs.

Finally, samples from large models are difficult to interpret, making mitigating these issues all the
more challenging (Belinkov et al., 2020; Jain and Wallace, 2019). Retrieval provides more insights in
to the outputs of a model, as one can directly visualise or modify the neighbours that are being used.
The examples in Table 6, 7, 20 and 21 illustrate how retrieval makes language models more factual
and interpretable by providing more transparent outputs.

4. Results

We first report results on language modelling benchmarks. Second, we show how to Retrofit
pre-trained Transformer language models into retrieval models with few additional FLOPs. Next,
we report Retro results on question answering. Finally, we report evaluation metrics with leakage
filtering, to better understand the source of the gains with retrieval.

4.1. Language modelling

Datasets. We evaluate our models on C4 (Raffel et al., 2020), Wikitext103 (Merity et al., 2017),
Curation Corpus (Curation, 2020), Lambada (Paperno et al., 2016) and the Pile (Gao et al., 2020).
We also evaluate on a set of manually selected Wikipedia articles that were added or heavily edited in
September 2021, months after our pre-training and retrieval dataset was collected (details are given
in §A.2). We construct the dataset with articles from the “future” and manually remove new articles
that strongly overlap documents in our training data. This guarantees that the evaluation documents
are not leaked in our training data.
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Figure 3 | Scaling with respect to model size. (a) LAMBADA top-1 accuracy. (b) Evaluation loss on
curation corpus. (c) Perplexity on Wikitext103 valid. (d) Bits-per-byte on selected Wikipedia articles
from September 2021.

For C4, Wikitext103, the Pile, and our Wikipedia dataset we evaluate the language modelling
performance on entire documents and measure the bits-per-byte (bpb). We favour bits-per-byte over
loss as it is tokenizer agnostic. We evaluate with a sequence length of 2048 tokens but use a stride of
1024 within documents to mitigate boundary effects. On Curation Corpus we concatenate the article,
the “TL;DR:” string, and the summary, but only evaluate the bpb on the summary. For Lambada we
evaluate the accuracy on the last word, using greedy generation.

Model scaling. In Fig. 1(left) and Fig. 3 we show the language modelling performance as we scale
models from 150 million to 7 billion (non-embedding) parameters. We see that on all datasets,
Retro outperforms the baseline at all model sizes. Furthermore, we observe that improvements do
not diminish as we scale the models. The performance is dataset dependent, with the largest gains on
Wikitext103 and C4. Wikipedia articles and other web pages are similar to Wikitext103 documents,
even if not exact copies (§4.4), we thus obtain dramatic improvements on Wikitext103 as our retrieval
model is able to directly exploit these overlaps. The smallest gains are for Curation Corpus, where
Retro only slightly outperforms the baseline. This is expected as Curation Corpus summaries are
designed to only contain information from the source article and are not included in our retrieval
database. On our “future” Wikipedia September 2021 dataset, we also observe consistent gains for
all model sizes.

Data scaling. Fig. 1 (middle) shows how scaling the retrieval database at evaluation improves the
language modelling performance. We observe dramatic gains as the retrieval data is increased from
Wikipedia (4 billion tokens) to all of Massive text (1.7T tokens). Fig. 1(right) shows how performance
scales as we increase the number of retrieved chunks. Despite being only trained with 2 neighbours,
we see consistent improvements for all models when the number of neighbours is increased from 1 to
10. Furthermore, we observe that larger models are able to better utilise more neighbours: the 172M
model improves with up to 10 neighbours, whereas the 7B model improves with up to 40 neighbours.

The Pile. We evaluate our 7B models on the Pile test sets3 and compare against the 178B parameter
Jurrasic-1 (Lieber et al., 2021) model and the 280B parameter Gopher (Rae et al., 2021) model. We
do not compare against GPT-3 as it is outperformed by Jurassic-1 and Gopher on almost all subsets.
Fig. 4 shows the relative improvements in bits-per-byte over our 7B transformer baseline for our

3Due to legal and ethical concerns relating to their use, we exclude the Enron Emails and the Youtube Subtitles datasets.

11



Improving language models by retrieving from trillions of tokens

dm
_m

at
he

m
at

ics

ub
un

tu
_ir

c

ni
h_

ex
po

rte
r

ar
xi

v

us
pt

o_
ba

ck
gr

ou
nd

s

op
en

su
bt

itl
es

ph
ilp

ap
er

s

ha
ck

er
ne

ws

st
ac

ke
xc

ha
ng

e

fre
el

aw

pu
bm

ed
_a

bs
tra

ct
s

bo
ok

s3

pi
le

_c
c

pu
bm

ed
_c

en
tra

l

gu
te

nb
er

g_
pg

_1
9

gi
th

ub

20

0

20

40

60

80

100

%
 im

pr
ov

em
en

t

Relative bits-per-byte improvement over our 7B baseline without retrieval
Jurassic-1 (178B)
Gopher (280B)
RETRO (7.5B)

Figure 4 | The Pile: Comparison of our 7B baseline against Jurassic-1, Gopher, and Retro. We
observe that the retrieval model outperforms the baseline on all test sets and outperforms Jurassic-1
on a majority of them, despite being over an order of magnitude smaller.

7.5B Retro model, Jurassic-1 and Gopher. Jurassic-1 outperforms the baseline on all datasets
except for books, likely due to the inclusion of books in our training data. Gopher and Retro
outperform the baseline on all test sets. Overall, Retro 7.5B outperforms Jurassic-1 and Gopher on
a majority of the test sets. On the dm_mathematics and ubuntu_irc subsets, our Retro model
does not outperform our 7B baseline and underperforms Jurassic-1. We hypothesise that the retrieved
neighbours on these datasets are not helpful, due to a combination of what is in our retrieval dataset
and the efficacy of the nearest-neighbour search.

Wikitext103. To validate our approach in a controlled setting, we compare ourmethodwith 𝑘NN-LM
(Khandelwal et al., 2020) on the Wikitext103 dataset in Table 4. We train a baseline transformer
on the training set of Wikitext103. This transformer has 24 layers, 1024 hidden units, 16 heads
and a key size of 64, as in Baevski and Auli (2019). Our baseline does not have adaptive input, and
our tokenizer has an open vocabulary, unlike Baevski and Auli (2019), which makes our baseline

Table 4 | Perplexities on Wikitext103. When using the Wikpedia dataset for retrieval, Retro
performs similarly to our implementation of 𝑘NN-LM. As we scale the retrieval dataset, Retro
performs much better. The perplexities for retrieving from full MassiveText are quite low, which is
partly due to partial overlap with Wikitext103 not caught by our deduplication.

Model Retrieval Set #Database tokens #Database keys Valid Test
Adaptive Inputs (Baevski and Auli, 2019) - - - 17.96 18.65
Spalm (Yogatama et al., 2021) Wikipedia 3B 3B 17.20 17.60
𝑘NN-LM (Khandelwal et al., 2020) Wikipedia 3B 3B 16.06 16.12
Megatron (Shoeybi et al., 2019) - - - - 10.81
Baseline transformer (ours) - - - 21.53 22.96
𝑘NN-LM (ours) Wikipedia 4B 4B 18.52 19.54
Retro Wikipedia 4B 0.06B 18.46 18.97
Retro C4 174B 2.9B 12.87 10.23
Retro MassiveText (1%) 18B 0.8B 18.92 20.33
Retro MassiveText (10%) 179B 4B 13.54 14.95
Retro MassiveText (100%) 1792B 28B 3.21 3.92
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perplexities a bit higher. The full experiment details and hyperparameters are given in §C.2 and
Table 11.

We re-implement 𝑘NN-LM with our tokenizer and baseline transformer to produce embeddings of
size 1024 for every token in Wikitext103. 𝑘NN-LM has probabilities 𝑝𝑘NN-LM = 𝜆𝑝𝑘NN + (1 − 𝜆)𝑝Lm
with 𝑝𝑘NN (𝑛𝑘) ∝ exp (−𝛼𝑑𝑘). We tune 𝜆 = 0.118 and 𝛼 = 0.00785 on the validation set (Fig. 7) and
report performance for these hyperparameters on both the validation and test set.

We fine-tune our baseline transformer into a Retro model (Fig. 7), using the Wikitext103
training data and retrieving from Wikipedia with 2 neighbours. We only train the new weights, as
explained in §4.2, and share the embedding weights between the encoder and the main pathway.
This is necessary for Wikitext103 which is quite small, as training Retro from scratch in this setting
leads to over-fitting.

We evaluate the fine-tuned Retro model with different retrieval sets. We use 10 neighbours at
evaluation for both Retro and 𝑘NN-LM. When retrieving from Wikipedia, we obtain results com-
parable to our 𝑘NN-LM implementation. Furthermore, scaling the retrieval database to MassiveText
yields dramatic improvements, though this is partly due to leakage (see §4.4). For reproducibility,
we also include results when retrieving from C4, which are close to previous state-of-the-art and
comparable to using 10 % of MassiveText.

It is worth noting that 𝑘NN-LM requires 1024 floats for every token in the retrieval dataset,
totalling 15 terabytes (Tb) for the 4 billion tokens in Wikipedia. 𝑘NN-LM and other token-level
retrieval approaches therefore don’t scale to retrieval databases with trillions of tokens such as
MassiveText. In comparison, Retro only requires 215Gb to index our Wikipedia dataset, and 93Tb
for MassiveText. Inspecting the number of retrieval database entries in Table 4 makes it clear why
retrieving at the chunk level is necessary when scaling to datasets with trillions of tokens.

4.2. Retro-fitting baseline models

We extend baseline models into Retro models by freezing the pre-trained weights and training
only chunked cross-attention and neighbour encoder parameters (less than 10% of weights for the
7B model) in Fig. 5. This offers an efficient alternative path to enhance transformers with retrieval,
requiring only 6 million sequences (3% of the pre-training sequences that we used). Additionally,
by only training the new weights we ensure that when evaluated without retrieval, the original
model performance is exactly maintained. Retrofitting models quickly surpasses the performance of
baseline models and even achieves performance close to that of Retro models trained from scratch.
The experiment hyperparameters are given in §C.3.

4.3. Question answering

We fine-tune our retrieval models on the Natural Questions (Kwiatkowski et al., 2019) dataset
to demonstrate that our retrieval pathway can be used to inject information from arbitrary data
sources. We use the version4 provided by Izacard and Grave (2021) which is augmented with the
retrieved passages from Dpr (Karpukhin et al., 2020). We fine-tune all the weights of our 7.5B
pre-trained Retro model for 25,000 steps using the top 20 retrieved passages. We format the
data as “question: {question} \nanswer: {answer}” and left pad the data such that
“answer:” coincides with the end of the first chunk of 64 tokens and thus aligns with the first
retrieving chunk. The model has access to the question via the previous tokens in the sequence as well
as the top 20 DPR Wikipedia passages and their titles via the chunked cross-attention mechanism.

4https://github.com/facebookresearch/FiD

13

https://github.com/facebookresearch/FiD


Improving language models by retrieving from trillions of tokens

Figure 5 | Retro-fitting a baseline transformer. Any transformer can be fine-tuned into a retrieval-
enhanced transformer by randomly initializing and training only the chunked cross-attention and
retrieval encoder weights. Fine-tuning in this way quickly recovers and surpasses the non-retrieval
performance, and almost achieves the same performance as training a retrieval model from scratch
(shown by the arrow on the right hand side of each plot). We find good performance Retro-fitting
our models training on only 3% the number of tokens seen during pre-training.

The exact match scores are shown in Table 5 and the full fine-tuning details are given in §C.4. Our
method is competitive with previous approaches such as Realm, RAG and Dpr, but underperforms
the more recent FiD. In contrast with this work, we find that increasing the number of neighbours
past 20 does not improve Retro performance on this task. We hypothesise that the encoder-decoder
structure of T5—the base model in FiD— and the T5 pre-training objective leads to a model that
relies more on the encoder output than Retro, which is important in the QA setting. To compete
with T5-finetuned models, future work should consider ways of forcing Retro to rely further on the
retrieval encoder output when producing tokens.

4.4. Relating retrieval performance to dataset leakage.

We report the filtered eval losses as detailed in §2.6 on C4, Curation Corpus and Wikitext103 in Fig. 6.
On C4 and Wikitext103, for which there is leakage into the training set, the slope is negative for both
baseline models and Retro models. Retro models exploit leakage more strongly than baseline
models, as indicated by the more negative slope. This is due to its explicit ability to copy-paste existing
training chunks to predict leaked evaluation chunks (see a qualitative example of this model behavior

Table 5 | Question answering results. Exact match accuracy on Natural Questions.

Model Test Accuracy
Realm (Guu et al., 2020) 40.4
Dpr (Karpukhin et al., 2020) 41.5
RAG (Lewis et al., 2020) 44.5
Emdr2 (Sachan et al., 2021) 52.5
FiD (Izacard and Grave, 2021) 51.4
FiD + Distill. (Izacard et al., 2020) 54.7

Baseline 7B (closed book) 30.4
Retro 7.5B (DPR retrieval) 45.5
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Figure 6 | Performance vs. longest common retrieval substring. Evaluation loss as a function of
allowed longest common substring between evaluation data chunks and their nearest neighbours.
Retrieval still helps when considering chunks with no more than 8 contiguous tokens overlapping
with training dataset chunks.

on a Wikitext103 article in Table 19). On Curation Corpus, retrieval provides a constant offset, which
is expected as there is by design no leakage between Curation Corpus and the training dataset.

On the other hand, Retro outperforms baseline models at all leakage levels, down to 𝛼 = 12.5%.
At this level, the loss is computed on chunks with less than 8 contiguous tokens shared with the
closest matching chunk in the training dataset—this is a reasonable level of overlap at which we
consider that there is no local leakage. Retrieval thus improves predictions on both chunks that are
syntactically similar to chunks in the training set, and on chunks that are syntactically different from
all training chunks. This points toward a non trivial Retro capacity of generalizing based on both
model parameters and retrieval database. Similar results are found on the Pile dataset (see Fig. 12,
§F.3).

4.5. Using Retro for sampling

We show examples of samples obtained using the 7.5B Retro model in Table 6, Table 7 and
Appendix E. For each chunk (the first one being the prompt), we juxtapose sampled chunks 𝐶𝑢 with
retrieved neighbours Ret (𝐶𝑢). To give an indication of local overlap, we colour each sampled token
in chunk 𝐶𝑢 based on the length of the longest common prefix (LCP) found in the retrieved chunks
Ret (𝐶𝑢−1). Similarly, we colour the retrieved chunks based on the LCP in the sampled chunk. For the
sample in Table 6, for which we chose the prompt, we observe that the retrieved chunks influence the
sample as there are overlaps between the sampled tokens and neighbour tokens. Overall, retrieval
reduces hallucinations (in line with the findings of Shuster et al. (2021)) and makes the model more
knowledgeable, when comparing with samples produced with retrieval disabled. In the sample in
Table 7, the model recognises that the prompt is the beginning of the first scene of Hamlet and
leverages retrieval data to continue it with only a few mistakes. We provide further examples in
Appendix E, including examples from the evaluation sets, as well as the detailed procedure used for
colouring the tables.

5. Conclusion

We present Retrieval-Enhanced Transformers (Retro), a method for modelling arbitrary text se-
quences whilst retrieving from databases with trillions of tokens—scaling the data available to models
by an order of magnitude compared to what is typically consumed during training. Retro models
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gains do not diminish for models with up to at least 7B parameters, and correspond to non-retrieval
models with 10× more parameters on certain datasets. On Wikitext103 and the Pile, Retro outper-
forms previous models trained on large scale datasets. We also show that Retro is competitive on
retrieval-intensive downstream tasks such as question answering.

Retro models are flexible and can be used without retrieval at evaluation and still achieve
comparable performance to baseline models. Conversely, baseline models can be rapidly fine-tuned
into Retro models to obtain nearly the same performance as if trained from scratch. Careful analysis
shows that only a modest fraction of the gains obtained by Retro are due to test set leakage. In
general, we caution for such leakage in large-scale language datasets and suggest further work in
better understanding the role of test set leakage in the performance of large-scale language models.

Overall, our work demonstrates at an unprecedented scale that semi-parametric approaches can
provide an orthogonal, more efficient approach than raw parameter scaling as we seek to build more
powerful language models.
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Table 6 | Sample - Beavers are interesting animals. The Retro[Off] sample quickly diverges to other
animals while the Retro[On] sample tends to stay focused on the beaver topic due to neighbour conditioning.

Prompt and sample of Retro[Off] Prompt and sample of Retro[On] [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

colored by LCP with Ret (𝐶𝑢−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

Beavers are interesting animals that Beavers are interesting animals that .Beavers build their lodges in pon naw them into smaller sections and d
live near rivers. They build live near rivers. They build ds they have created in wooded areas rag them into the water.Engineers

.Like many things in nature, there of the Pond Beavers are interesting
is a connection between creatures i animals because they change the hab
n the wild.Beaver ponds cause tree itat in which they live. Beavers do
s to drown, but the dead trees attra this by blocking up streams to creat
ct the great blue heron, which often e ponds. Then they build their homes
return year after year. Over time, , called lodges, in these ponds. Bea
a beaver pond can attract more than vers’ bodies make them well-suited f
50 nests in a colony, called a rooke or underwater building Special muscl
ry.An example of this can be found es close off their noses, ears, and
in the large pond off Bradford Road throats to keep the water out. Beave
at Carter Fields near the Boxford l rs’ broad tails act like rudders for
ine.Chris Leahy, an expert with th steering. Their two very large, ora
e Massachusetts Audubon Society who nge front teeth are used to gnaw dow
wrote n trees. They begin building their d

am

dams to create ponds. Frogs are am their houses called beaver dams in , then they mean that you are very b ar-like tail, and two protruding tee
phibians, so they can live in both l the riverbeds. They also live on lan usy. Beavers swim easily in streams, th that are strong enough to gnaw do
and and water. They have great camou d.Beavers use their strong teeth an picking up rocks and sticks to buil wn trees. The beaver uses trees, bra
flage to hide from predators. The G d strong jaws to cut down trees and d their dams. They gnaw at trees wit nches, and mud to build dams across
olden Retriever, or Golden, is a ver branches to build their homes. They h their big front teeth to cut them rivers and streams. These dams creat
y big dog. They are very strong, and also use their teeth and jaws to che down. Then they use parts of the tre e a deep pool of water in which the
have a thick coat to help them live w up food. Beavers use their big, fl es to build their houses.Beavers ar beaver builds its home. A beaver hom
in at tails to swim. They use e clever builders. They know exactly e is called a lodge. A baby beaver o

what they need to build their beave r “kit” remains in the family lodge
r dams. They use mud from the stream until the age of two.Beaver fur, kn
to make their dams stay together. T own as pelt, was once highly popular
hey use their tails to pat down the as a trim for hats and coats. How m
mud.Beavers put a snug room at the ight the popularity of beaver fur co
top of their dams for their babies. ntributed to the colonization of New
They store their food underwater. Be York?wwwWw
avers eat the bark from the

cold areas. A kangaroo is an anima their sharp teeth to gnaw at rocks , then they mean that you are very b w at trees with their big front teet
l that is very large. It can jump ve and cut trees. They use their flat t usy. Beavers swim easily in streams, h to cut them down. Then they use pa
ry high. They can run very fast. A ails to steer when they are swimming picking up rocks and sticks to buil rts of the trees to build their hous
meerkat is a small animal that lives .In the winter, beavers have to bui d their dams. They gnaw at trees wit es.Beavers are clever builders. The
in Africa. They live in colonies of ld a house called a beaver lodge. Th h their big front teeth to cut them y know exactly what they need to bui
up to a hundred of them. They can c ey build a house that is very strong down. Then they use parts of the tre ld their beaver dams. They use mud f
limb trees very easily. . The walls are made of twigs. The r es to build their houses.Beavers ar rom the stream to make their dams st

oof is made e clever builders. They know exactly ay together. They use their tails to
what they need to build their beave pat down the mud.Beavers put a snu
r dams. They use mud from the stream g room at the top of their dams for
to make their dams stay together. T their babies. They store their food
hey use their tails to pat down the underwater. Beavers eat the bark fro
mud.Beavers put a snug room at the m the trees that they cut down!1. W
top of their dams for their babies. hat is the main idea of the first pa
They store their food underwater. Be ragraph?.2. What is the main idea o
avers eat the bark from the f the second paragraph?

A mouse is a small mammal that lives of branches and other tree parts. T
on land. It is a very good climber hey also use their strong jaws to cu
and it can run very fast. Penguins t trees. They bring them to their ho
are birds that live on Antarctica. T use. They also use their sharp teeth
hey have a thick coat to keep them w to chew up the tree parts. They use
arm. Rabbits are small animals that their flat tails to swim to the top
live in the ground. They of their house. Then they use their

teeth and jaws to chew up the tree
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Table 7 | Sample - Hamlet, Act 1, Scene 1. The Retro[Off] sample has correct syntax but is hallucinated,
and ends with repetition of one character (FRANCISCO Approach me not). The Retro[On] sample is the
correct continuation of the original text, and is robust to formatting differences between our prompt and the
retrieved data.

Prompt and sample of Retro[Off] Prompt and sample of Retro[On] [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

colored by LCP with Ret (𝐶𝑢−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

ACT I SCENE I. Elsinore. A pla ACT I SCENE I. Elsinore. A pla ACT I SCENE I. Elsinore. A pla ><TEXT>ACT I SCENE I. Elsin
tform before the castle. FRANC tform before the castle. FRANC tform before the castle. (FRAN ore. A platform before the cas
ISCO at his post. Enter to him ISCO at his post. Enter to him CISCO at his post. Enter to hi tle. FRANCISCO at his post. E
BERNARDO BERNARDO Who’s there BERNARDO BERNARDO Who’s there m BERNARDO) BERNARDO Who’s the nter to him BERNARDO BERNARDO
? FRANCISCO Nay, answer me: st ? FRANCISCO Nay, answer me: st re? FRANCISCO Nay, answer me: Who’s there? FRANCISCO Nay, an
and, and unfold yourself. BERN and, and unfold yourself. BERN stand, and unfold yourself. BE swer me: stand, and unfold you
ARDO ARDO RNARDO Long live the king! FRA rself. BERNARDO Long live the

NCISCO Bernardo? BERNARDO He. king! FRANCISCO Bernardo? BERN
FRANCISCO You come most carefu ARDO He. FRANCISCO You come mo
lly upon your hour. BERNARDO ’ st carefully upon your hour. B
Tis now struck twelve; get the ERNARDO ’Tis now struck twelve
e to bed, Francisco. FRANCISCO ; get thee to bed, Francisco.
For this relief much thanks: FRANCISCO For this relief much
’tis bitter cold, And I am sic thanks: ’tis bitter cold, And
k at heart. BERNARDO Have you I am sick at heart.

Who calls ? FRANCISCO I am th Long live the king! FRANCISCO Long live the king! FRANCISCO live the king! FRANCISCO Bern
e lord here; I, Francisco, tha Bernardo? BERNARDO He. FRANCI Bernardo? BERNARDO He. FRANCI ardo? BERNARDO He. FRANCISCO Y
t am sick of grief. [ Aside. B SCO You come most carefully up SCO You come most carefully up ou come most carefully upon yo
ERNARDO The king ! FRANCISCO I on your hour. BERNARDO ’Tis no on your hour. BERNARDO ’Tis no ur hour. BERNARDO ’Tis now str
am sick of that also. BERNARD w struck twelve; get thee to b w struck twelve; get thee to b uck twelve: get thee to bed, F
O My lord ? FRANCISCO Do not a ed, Francisco. FRANCISCO For t ed, Francisco. FRANCISCO For t rancisco. FRANCISCO For this r
pproach me. BERNARDO his relief much thanks: ’tis b his relief much thanks: ’tis b elief much thanks: ’tis bitter

itter cold, And I am sick at h itter cold, And I am sick at h cold, And I am sick at heart.
eart. B eart.</TEXT></DOC><DOC><DO BERNARDO Have you had quiet g

CNO>romeo</DOCNO><TEXT>ACT I uard? FRANCISCO Not a mouse st
PROLOGUE Two households, bo irring. BERNARDO Well, good ni

th alike in dignity, In fair V ght. Ifyou do meet Horatio and
erona, where we lay our scene, Marcellus, The rivals2 of my
From ancient grudge break to watch, bid them make haste. FR
new mutiny, ANCISCO I think I hear them.—

Stand, ho! who is there? EN

Francisco, I would speak with ERNARDO Have you had quiet gua had quiet guard? FRANCISCO No ARDO Have you had quiet guard?
you. FRANCISCO Approach me not rd? FRANCISCO Not a mouse stir t a mouse stirring. BERNARDO W FRANCISCO Not a mouse stirrin
, but speak. BERNARDO Your han ring. BERNARDO Well, good nigh ell, good night. If you do mee g. BERNARDO Well, good night.
d, your voice FRANCISCO I will t. If you do meet Horatio and t Horatio and Marcellus, The r Ifyou do meet Horatio and Marc
not hear thee speak. BERNARDO Marcellus, The rivals of my wa ivals of my watch, bid them ma ellus, The rivals2 of my watch
Francisco, your hand, I entre tch, bid them make haste. FRAN ke haste. FRANCISCO I think I , bid them make haste. FRANCIS
at thee. FRANCISCO Approach me CISCO I think I hear them. Sta hear them. Stand, ho! Who’s th CO I think I hear them.— Stand
not. BERNARDO Francisco FRANC nd, ho! who is there? Enter ere? (Enter HORATIO and MARCEL , ho! who is there? ENTER HORA

LUS) HORATIO Friends to this g TIO AND MARCELLUS. HORATIO Fri
round. MARCELLUS And liegemen ends to this ground. MARCELLUS
to the Dane. FRANCISCO Give yo And liegemen to the Dane.3 FR
u good night. MARCELLUS O, far ANCISCO Give you good night. M
ewell, honest soldier: Who hat ARCELLUS O, farewell, honest s
h relieved you? FRANCISCO Bern oldier: Who hath relieved you?
ardo has my place. Give you go FRANCISCO Bernardo hath my pl
od night. (Exit ace. Give you good night

ISCO Approach me not. BERNARDO HORATIO and MARCELLUS HORATIO
I have a letter FRANCISCO App Friends to this ground. MARCE
roach me not. BERNARDO For the LLUS And liegemen to the Dane.
king. FRANCISCO Approach me n FRANCISCO Give you good night
ot. BERNARDO There’s no treaso . MARCELLUS O, farewell, hones
n in’t. FRANCISCO Approach me t soldier: Who hath relieved y
not. BERNARDO I will ou? FRANCISCO Bernardo hath my

place. Give you good night.
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A. Datasets

We provide a full description of MassiveText and of our extract of recent Wikipedia articles.

A.1. Full description of MassiveText

The full break down of MassiveText by source and languages is given in Table 8. For a full description
and analysis of MassiveText, see Rae et al. (2021).

Source Language Token count (M) Documents Sampling weight

Web

En 483,002 604,938,816 0.314
Ru 103,954 93,004,882 0.033
Es 95,762 126,893,286 0.033
Zh 95,152 121,813,451 0.033
Fr 59,450 76,612,205 0.033
De 57,546 77,242,640 0.033
Pt 44,561 62,524,362 0.033
It 35,255 42,565,093 0.033
Sw 2,246 1,971,234 0.0044
Ur 631 455,429 0.0011

Books En 3,423,740 20,472,632 0.25
News En 236,918 397,852,713 0.1

Wikipedia

En 3,977 6,267,214 0.0285
De 2,155 3,307,818 0.003
Fr 1,783 2,310,040 0.003
Ru 1,411 2,767,039 0.003
Es 1,270 2,885,013 0.003
It 1,071 2,014,291 0.003
Zh 927 1,654,772 0.003
Pt 614 1,423,335 0.003
Ur 61 344,811 0.0001
Sw 15 58,090 0.0004

Github - 374,952 142,881,832 0.05
Total - 5,026,463 1,792,260,998 1

Table 8 | MassiveText dataset. The final column indicates the sampling weight for each dataset
during training. For the retrieval database, the entire dataset is used, with the exception of books for
which we use a sub-sample of 4%.

A.2. Wikipedia September 2021

We create an evaluation dataset consisting of 23 Wikipedia articles that were added or heavily edited
in September 2021, after we collected our training dataset. In addition, we filter out articles that rely
too heavily on templated content, using the method detailed in §2.6 to identify articles with chunks
that have a high overlap with their neighbours. Fig. 10 show that little overlap remains between our
test dataset and the retrieved neighbours from the training dataset. The full list of included articles is
given in Table 9.
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Table 9 | Full set of articles included in our Wikipedia Sept. 2021 evaluation dataset.

Megan Rohrer Aakashavaani
Emma Raducanu Junior Eurovision Song Contest 2021
Ambra Sabatini Pavilion Bukit Jalil
WhyDonate Blake Desjarlais
The Juggernaut (company) 2021 All-Ireland Senior Football Championship Final
Angela Diaz Drift-barrier hypothesis
2020 Summer Paralympics Venomics
2021 Afghan protests Great Circle (novel)
Rexh Xhakli Hurricane Ida
Julia Laskin 2021 Montenegrin episcopal enthronement protests
Cuijk At War With the Silverfish
Ghoubet Wind Power Station

We first parse articles using mwparserfromhell5. We then remove sections with the following
titles: “references”, “external links”, “sources”, “further reading”, “see also”, “citations”, and “note”. In
the remaining sections, we remove Wikilinks and remove the following templates: “reflist”, “notelist”,
“notelist-ua”, “notelist-lr”, “notelist-ur”, and “notelist-lg”. We also exclude objects with the “ref” or
“table” tag and clean the remaining text with the strip_code function. Finally, we concatenate the
title and all the sections and use \n\n to delimitate them.

B. Details on the retrieval architecture

We give details on the Retro architecture, and on the fine-tuning procedure we use for Retrofitting
existing language models.

B.1. Retro architecture and implementation

B.1.1. Feed-forward architecture

As mentioned in the main text, the overall encoder-decoder architecture is fully feed-forward. We start
with a sequence 𝑋 ∈ 𝕍𝑛 = (𝐶𝑢)16𝑢6𝑙, and its pre-computed neighbours (Ret (𝐶𝑢))16𝑢6𝑙 and returns
logits in ℝ𝑛×|𝕍 |. Along with Attn, Ffw, Cca and Ca operators introduced in the main text, we
define the decoder embedding layer Emb : 𝕍𝑛 → ℝ𝑛×𝑑, the Split operator that extracts chunked
intermediary embeddings Split (𝐻) , (𝐻𝑢)16𝑢6𝑙 ∈ ℝ𝑙×𝑚×𝑑 and the read-out layer Read : ℝ𝑛×𝑑 →
ℝ𝑛×|𝕍 |. We then describe the forward pass in Algorithm 1. In addition to the usual Transformer ones,
Retro architecture hyperparameters involves the layer indices 𝑃enc and 𝑃, at which the encoder and
the decoder perform cross-attention.

B.1.2. Relative positional encoding in the chunked cross-attention layer

The Ca operator uses relative positional logits, that are computed from a specific relative distance
separating data tokens from retrieval tokens. Indeed, we expect any retrieval neighbour Ret (𝐶𝑢) 𝑗 and
the chunk 𝐶𝑢 to be relatively well aligned, and assume that they start at the same position. Therefore,
when computing Ca (𝐻+𝑢 , 𝐸𝑢), we set the distance between the data token 𝑖 ∈ [1, 𝑙] of chunk 𝐶+𝑢 and

5https://github.com/earwig/mwparserfromhell
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the retrieval token 𝑖′ ∈ [1, 2𝑙] of Ret (𝐶𝑢) 𝑗 to be
𝑑(𝑖, 𝑖′) , 𝑖 − 𝑖′ + 𝑙 − 1. (6)

When computing the encoder cross-attentions Ca (Ret (𝐶𝑢) 𝑗, 𝐻𝑢), we set the distance between the
retrieval token 𝑖′ ∈ [1, 2𝑙] and the data token 𝑖 ∈ [1, 𝑙] to be

𝑑enc(𝑖′, 𝑖) , 𝑖′ − 𝑖. (7)
Positional logits are obtained as a linear transform of a cosine vector computed from (𝑑(𝑖, 𝑖′))𝑖,𝑖′, and
are added to content logits, as in a regular self-attention block.

B.1.3. Chunked cross-attention implementation

Our implementation of the Cca operator, shown in Listing 1, is based on a vectorized application of
a cross-attention layer. For simplicity, we omit the multi-head attention logic and use the simplest
Q,K,V attention. We omit relative positional logits computation, described above.

B.1.4. Optional sharing of embedding matrices

We use disjoint embeddings for the encoder and decoder by default, which allows us to use a different
dimensionality for the encoder (typically kept at 𝑑Enc = 896) and for the decoder (that we scale up
to 𝑑 = 8192). It is possible to share the embeddings, with little difference in training, as we show in
the ablation section.

B.2. Baseline to Retro model fine-tuning

As shown in Fig. 5, we found that we were able to take a pre-trained baseline transformer and add
Retro through fine-tuning. In all cases, we froze all weights from pre-training and freshly initialised
the retrieval encoder and cross-attention weights. In all cases, the cross-attention is added every third
layer starting at layer six. The learning rate for the three smaller models was set to 2 × 10−4 and
half that for the larger model. We experimented with allowing the entire model to resume training
during fine-tuning but consistently found that the best approach was to freeze the pre-trained model.
This kept the retrieval-off performance frozen whereas when all weights were tuned the retrieval off
performance would degrade.

C. Training details and hyperparameters

We provide the hyperparameters used in the various experiments of §4.

C.1. Language model pre-training

In Table 10, we show the hyperparameters of the different models we train. In all cases, we train for
419,430,400,000 training tokens. The three smaller models are trained with a batch size of 256 and
the largest model is trained with a batch size of 1024. The minimum learning rate is set to 0.1 times
the maximum learning rate, which is shown in Table 10. The learning rate is decayed using a cosine
cycle length that matches the total number of training tokens. All models are trained using AdamW
(Loshchilov and Hutter, 2019) with a weight decay parameter of 0.1. The learning rate linearly
increases from 10−7 to the maximum learning rate over the first 750 steps of training. All models use
ZeRO to shard the optimiser state (Rajbhandari et al., 2020). Additional infrastructure details can be
found in Rae et al. (2021).
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Listing 1 | Jax implementation of the chunked cross attention, simplified.

n = 128 # Sequence length
m = 16 # Chunk length
r = 32 # Retrieval length
k = 4 # Number of neighbours
d = 16 # Embedding size
l = n // m # Number of chunks

# Parameters
Q = jnp.zeros((d, d))
K = jnp.zeros((d, d))
V = jnp.zeros((d, d))

def relative_positional_encodings(attending_length, attended_length):
# Classical relative positional encodings
...

def cross_attention(chunk, neighbour):
m, d = chunk.shape
r, d = neighbour.shape
queries = chunk @ Q
keys = neighbour @ K
logits = queries @ keys.T
values = neighbour @ V
return logits, values

def multi_neighbour_cross_attention(chunk, neighbours):
m, d = chunk.shape
k, r, d = neighbours.shape

logits, values = jnp.vectorize(cross_attention,
signature=’(m,d),(r,d)->(m,r),(r,d)’)(

chunk, neighbours)
assert logits.shape == (k, m, r)
assert values.shape == (k, r, d)
logits += relative_positional_encodings(m, r)[None, :, :]
logits = jnp.moveaxis(logits, 0, -1).reshape((m, r * k))
values = jnp.moveaxis(values, 0, 1).reshape((r * k, d))
return jax.nn.softmax(logits) @ values

def multi_chunk_cross_attention(observation, neighbours):
attending_chunks = jnp.pad(observation[m-1:],

((0, m - 1), (0, 0)),
mode=’constant’).reshape(l, m, d)

chunked_output = jnp.vectorize(multi_neighbour_cross_attention,
signature=’(m,d),(k,r,d)->(m,d)’)(

attending_chunks, neighbours)
assert chunked_output.shape == (l, m, d)
output = jnp.pad(chunked_output.reshape(n, d),

((m - 1, 0), (0, 0)),
mode=’constant’)[:n]

return output

observation = jnp.zeros((n, d)) # Input
neighbours = jnp.zeros((l, k, r, d))

h = multi_chunk_cross_attention(observation, neighbours)

assert h.shape == (n, d) # Output
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Table 10 | Retro model hyperparameters, along with the size of the decoder.

Baseline 𝑑𝑚𝑜𝑑𝑒𝑙 𝑑 𝑓 𝑓𝑤 # heads Head size # layers 𝑃 𝑃Enc Max LR
247M 896 3584 16 64 12 [6, 9, 12] [1] 2×10−4
564M 1536 6144 12 128 12 [6, 9, 12] [1] 2×10−4
1,574M 2048 8192 16 128 24 [9, 12, . . . , 24] [1] 2×10−4
7,505M 4096 16384 32 128 32 [9, 12, . . . , 32] [1] 1×10−4

Table 11 | Hyperparameters for the Wikitext103 experiments presented in Table 4. We use the same
learning rate schedule for the baseline and the Retro-fitting. For Retro-fitting, we reset the
schedule i.e. the schedule starts from step 0, not from step 35,000.

Model Number of layers 18
𝑑 1024
𝑑Ffw 4096
Key size 64
Value size 64
Number of heads 16

Training data Dataset Wikitext103train
Sequence length 3072
Batch size 128
Tokenizer vocabulary size 128,000

Optimisation optimiser Adam
Adam’s 𝛽1 0.9
Adam’s 𝛽2 0.95
Adam’s 𝜀 1e-8
Dropout rate 0.25

Schedule Learning rate start 1e-7
Learning rate max 2.5e-4
Learning rate min 2e-5
Warmup steps 4,000
Cosine cycle steps 100,000

Evaluation Overlapping proportion 87.5 %

C.2. Wikitext103 comparison

We provide more details on our Wikitext103 results presented in §4.1 and Table 4. We train a baseline
transformer on the Wikitext103 training set with the hyperparameters presented in Table 11. The
learning rate ramps linearly from 1 × 10−7 to 2.5 × 10−4 in the first 4,000 steps, then decays to
2 × 10−5 at 100,000 steps using a cosine schedule. The baseline checkpoint at step 35,000 has the
lowest perplexity on Wikitext103 valid, of 21.58, for overlapping proportion of 75% (sliding window
evaluation that only uses probabilities for tokens that have at least 75% of the sequence length of
context, when available). We use this checkpoint for all our baseline and 𝑘NN-LM numbers reported
in Table 4, except that Table 4 reports for an overlapping proportion of 87.5 %, which slightly lowers
the perplexity of our baseline to 21.53 on Wikitext103 valid.

We also use the 35,000 step baseline checkpoint as initialization for a Retrofit, which otherwise
uses the same optimiser and schedule hyperparameters but only trains the new retrieval weights, as
explained in §4.2. Our best Retrofit checkpoint has a Wikitext103 valid perplexity 18.46, when
retrieving from Wikipedia. We use this Retro checkpoint in Table 4 for all other retrieval sets. The
evaluation curves for our baseline and Retrofit is shown if Fig. 7 (left). In this particular case,
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because Wikitext103 is quite small, training a Retro model from scratch led to weaker results than
the baseline, at least when retrieving from Wikipedia, as we couldn’t find an effective way to mitigate
the increased over-fitting due to the additional weights of Retro.

We also re-implement 𝑘NN-LM using the same tokenizer and dataset that we use for our base-
line and Retrofitting experiments. 𝑘NN-LM has probabilities 𝑝𝑘NN-LM = 𝜆𝑝𝐿𝑀 + (1 − 𝜆)𝑝𝑘𝑁𝑁 with
𝑝𝑘𝑁𝑁 (𝑛𝑘) ∝ exp(−𝛼𝑑𝑘). To tune 𝜆 and 𝛼, we begin with 𝛼 = 0.0012, which corresponds to the inverse
of the standard deviation of the norm of the embeddings that we use as keys and queries for 𝑘NN-LM.
We find the best 𝜆 = 0.118. We then find the best 𝛼 = 0.00785 for that value of 𝜆. Fig. 7 center and
right respectively show the perplexity of 𝑘NN-LM as a function of 𝜆 and 𝛼.
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Figure 7 | Wikitext103valid perplexities. Left: Baseline and Retrofit (initialized from baseline’s
checkpoint at 35,000 steps) perplexities as a function of training steps. Center and right: 𝑘NN-LM
perplexity as a function of 𝜆 (for 𝛼 = 0.0012) and 𝛼 (for 𝜆 = 0.12) respectively.

C.3. Retrofitting baseline models experiments

In Table 12, we give the hyperparameters used for Retrofitting the models on Massive Text.

Table 12 | Hyperparameters for the Retrofitting experiments

Model Layers with Retro-block (𝑃) Learning rate Batch size
172M Every 3rd from 6 2 × 10−4 → 2 × 10−5 256
425M Every 3rd from 6 2 × 10−4 → 2 × 10−5 256
1.5B Every 3rd from 6 2 × 10−4 → 2 × 10−5 256
7.5B Every 3rd from 6 1 × 10−4 → 1 × 10−5 256

C.4. Question answering experiments

We fine-tune our 7.5B Retro model for 25,000 steps, using a batch size of 128, a learning rate
cosine scheduled from 10−6 to 10−7, with a linear ramp of 750 steps. We use dropout in the decoder
only, as it performs better than using dropout in both the encoder and the decoder. Each neighbour
is formatted as title: {title}, source: {source}. We use the top 20 neighbours from
Dpr when training and evaluating.
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Table 13 | Performance of Retro for different variants. Model performance on C4 evaluation set,
measured in bytes-per-bits, for a 247M parameter model trained with a 157 billion token schedule.

Ablation group Ablation C4 eval bpb
Model Retro 0.822

No query conditioning 0.829
No CA positional encodings 0.826
Shared embeddings 0.823
6-layer encoder 0.821

Retrieval values Neighbours N 0.950
Continuations F 0.895
No retrieval 0.987

Training neighbours 1 training neighbours 0.858
4 training neighbours 0.847

Cross attention position CA top layer (1/12) 0.827
CA mid layer (6/12) 0.823
CA top layer (12/12) 0.831
CA all layers 0.860
CA every 3 from 1 0.823

D. Model ablations

We validate important design choices by evaluating what happens when we do not include them. We
use the 247M parameter model for all experiments and we train on a compressed 157 billion token
schedule for all ablation experiments. We describe results relative to the default settings presented in
the main text and recalled here. We report C4 evaluation loss at the end of the training process, and
also compares how the evaluation loss decrease versus the training time, measured relatively to the
baseline training time. Results are reported in Fig. 8 and Table 13.

Using relative encodings in cross-attention. Using relative encodings in cross-attention, as de-
scribed in §B.1.2, provides a pure improvement both in the number of steps to reach a given perfor-
mance and computational efficiency.

Conditioning the encoder on the previous chunk. Conditioning the encoder on the previous
chunk’s intermediate embeddings, as described in §B.1.1, provides a pure improvement both in term
of number of steps and computational efficiency.

Sharing embeddings. Sharing embeddings across the encoder and the decoder does not affect
performance. This motivates us using separate embeddings, as it allows to have a narrower encoder
than decoder as we scale up the decoder size.

Attending neighbours and their continuation. Retro models are trained by attending, for a
given chunk, to both the neighbours of the preceding chunk and their continuation in time. We
measure how training and evaluating Retro models on neighbours only and their continuation
only affects performance. Overall, attending to neighbours only provides 22% of the performance
improvement due to retrieval in Retro, while attending the future of the neighbours gives 56% of
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Figure 8 | Computational efficiency for different variants. We report the training curves plotting
C4 evaluation bytes per bits against time, relative to the time taken to train the baseline Retro
model. Overall, our design choices are optimal in term of computational efficiency.

the performance. Attending to both neighbours and their continuation is the most efficient choice
both in term of final performance and training efficiency.

Training a deeper encoder. All models in the text use a relatively small Retro encoder. We
experimented with a 3× deeper encoder. We found that this resulted in a tiny decrease in loss– 0.15%
at the cost of a larger training time (+20%). Overall, using a shallow encoder is the best choice in
term of training efficiency.

Training with multiple neighbours. We measure the effect of training on a single retrieved neigh-
bour, as well as training on 4 neighbours (Retro uses 2 neighbours in training). Training on a
single neighbour results in a large decrease in performance, while training on 4 neighbours does not
give substantial performance improvement at the end of training, but induces a large computational
overhead. Overall, we find that using 2 neighbours is the best choice in term of training efficiency.
Furthermore, evaluation can be done with additional neighbours.

Frequency of cross-attention. We measure how the frequency of cross-attention in the decoder
affects performance. Overall, attending only once at the top or the bottom layer is a bad choice, while
attending once on a mid-depth layer is relatively sound. We choose to have cross-attention every 3
layer as this provides a good trade-off between performance and run-time.
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E. Qualitative experiments

We illustrate the usage of Retro models by looking at the perplexity of evaluation samples and by
producing samples autoregressively.

E.1. Inspecting neighbours and perplexities on evaluation data

To build an intuition of what kind of information is leveraged by Retro models, we suggest to
have a closer look at a few evaluation documents and the corresponding retrieved data in Tables
16, 17, 18 and 19. In these tables, the 4 rows corresponds to the first 4 chunks of the documents.
The left-most column shows the chunk 𝐶𝑢 from the document being evaluated, where each token is
coloured by the negative cross entropy loss difference 𝐿Retro[Off] − 𝐿Retro , a positive value, coloured
in yellow, indicates that Retro performs better when it has access to neighbours data. The second
columns also shows the evaluated chunk 𝐶𝑢 but where each token 𝑖 is coloured by the length of the
longest common prefix (LCP) with the preceding neighbours, i.e. the largest integer 𝑗 such that
the prefix (𝑥𝑖− 𝑗−1, . . . , 𝑥𝑖) also appears in Ret (𝐶𝑢−1). Conversely, columns three and four show the
first two neighbours and their continuation, respectively [𝑁1

𝑢 , 𝐹
1
𝑢 ] and [𝑁2

𝑢 , 𝐹
2
𝑢 ] coloured by LCP with

subsequent chunk 𝐶𝑢+1. LCP colouring helps to visually identify where the evaluated document
overlaps the retrieved data. Note that the first chunk, 𝐶1, in the second column is not coloured as
it does not have any preceding neighbours to compute LCP with. Similarly, we do not show the
neighbours of the fourth chunk, as these are not used to condition any of the first four chunks.

Our qualitative analysis exhibits two major behaviors.
Firstly, we observe that sometimes, specific facts in 𝐶𝑢 can be extracted from the preceding

neighbours Ret (𝐶𝑢−1) and that this can correspond to significant reduction in loss from the Retro
model for the corresponding tokens. Some examples of such behavior include the journal name
Publishers Weekly in Table 16, the football team name Tyrone in Table 17 or the event dates 25 August
to 6 September 2020 in Table 18. In these three examples, the evaluated data consists of recent
Wikipedia articles written in September 2021, after we built our retrieval dataset (see section §A.2).
Yet, relevant information to predict this new data was available in the pre-existing retrieval data and
the Retro model seems to be able to correctly leverage it.

On the other hand, we also observe that some of the evaluation data can partially leak in our
training and retrieval data, despite the use of deduplication. Retro can dramatically exploit such
leakage. Table 19 illustrates this behavior, where the chunks 𝐶2 and 𝐶3 largely overlaps Ret (𝐶1) and
Ret (𝐶2) respectively, up to small formatting differences, which leads to much lower Retro loss for
all the corresponding tokens. Fig. 6 shows that it is possible to quantify how much of the Retro loss
reduction is due to each of these two behaviors, by filtering out evaluation chunks that overlaps with
the retrieval set.

E.2. Inspecting samples

We can follow the same procedure as above on samples generated using Retro models, in order to
better understand where retrieval data had an influence on sampling. We show examples of samples
obtained using the 7.5B Retro model in Table 6, 7, 20 and 21.

E.3. Neighbour quantification

To quantify a notion of distance between the source document and the retrieved chunks, we can ask
the distance between source articles when retrieving only from Wikipedia. Consonni et al. (2019)
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Figure 9 |Wikipedia link-distance between retrieved articles. For each sequences, chunk combina-
tion we compute the link distance between the target and the top-5 neighbours using only Wikipedia.
The rank shows the relative neighbour distance, where rank-1 is the first neighbour and rank 5 is
the fifth. The different colours represent link distance. Because we do not retrieve from the same
document, 1 is the smallest value. We find, on average, the distance between random articles with a
path between them is over 5.0

provides a Wikipedia link dataset which, for each article, contains a list of neighbouring articles.
Using this, we construct a directed graph and compute the distance from one page to another. In
Fig. 9 we compute the link-distance between training sequences and the retrieved neighbours. We
find that retrieved documents tend to be from articles that are quite close to the article containing
the target. Furthermore, we find that on average the distance increases with rank, suggesting that
our neighbours are both useful and that the order is reasonable. This provides confidence for our
larger-scale experiments where document distance is less well defined.

F. Complementary quantitative results

We report tables corresponding to quantitative figures of the main text, as well as further filtered
language model results on the Pile.

F.1. Main text datasets

We report the performance of Retro and baseline models, measured in bits-per-bytes on evaluation
set, in Table 14.

F.2. The Pile

In Fig. 4, we compare Retro against Jurassic-1 (Lieber et al., 2021). The full bits-per-bytes results
are reported in Table 15.

F.3. Filtered results

Distribution of leaked chunks in our main evaluation sets. We evaluate leakage between the
evaluation sets and the training set by measuring the proportion of evaluation chunks with a certain
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Table 14 | Full results for the main language modelling datasets. First three sets of rows correspond
to Fig. 1, last set of rows to Fig. 3.

Baseline Retro [Off] Retro[On]
172M 425M 1.5B 7.5B 172M 425M 1.5B 7.5B 172M 425M 1.5B 7.5B

C4 Eval bpb 0.98 0.92 0.84 0.78 0.98 0.92 0.84 0.78 0.82 0.77 0.71 0.66
C4 Eval bpb (900B) - - - - - - - - 0.88 0.83 0.76 0.71
C4 Eval bpb (360B) - - - - - - - - 0.92 0.87 0.80 0.74
C4 Eval bpb (180B) - - - - - - - - 0.94 0.89 0.81 0.75
C4 Eval bpb (90B) - - - - - - - - 0.95 0.89 0.82 0.76
C4 Eval bpb (36B) - - - - - - - - 0.96 0.90 0.83 0.77
C4 Eval bpb (18B) - - - - - - - - 0.96 0.91 0.83 0.77
C4 Eval bpb (9B) - - - - - - - - 0.96 0.91 0.83 0.77
C4 Eval bpb (4B) - - - - - - - - 0.97 0.91 0.84 0.78
C4 Eval bpb (2B) - - - - - - - - 0.97 0.91 0.84 0.78
C4 Eval bpb (𝑘 = 1) - - - - - - - - 0.84 0.79 0.73 0.67
C4 Eval bpb (𝑘 = 2) - - - - - - - - 0.83 0.78 0.72 0.67
C4 Eval bpb (𝑘 = 3) - - - - - - - - 0.82 0.78 0.71 0.66
C4 Eval bpb (𝑘 = 4) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (𝑘 = 5) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (𝑘 = 10) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (𝑘 = 20) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (𝑘 = 30) - - - - - - - - 0.82 0.77 0.71 0.65
C4 Eval bpb (𝑘 = 40) - - - - - - - - 0.83 0.77 0.71 0.65
C4 Eval bpb (𝑘 = 50) - - - - - - - - 0.83 0.78 0.71 0.66
C4 Eval bpb (𝑘 = 60) - - - - - - - - 0.84 0.78 0.72 0.66
C4 Eval bpb (𝑘 = 70) - - - - - - - - 0.84 0.79 0.72 0.66
C4 Eval bpb (𝑘 = 80) - - - - - - - - 0.85 0.79 0.73 0.66
C4 Eval bpb (𝑘 = 90) - - - - - - - - 0.85 0.79 0.73 0.66
C4 Eval bpb (𝑘 = 100) - - - - - - - - 0.85 0.79 - 0.67
Lambada Accuracy 0.42 0.51 0.61 0.69 0.47 0.54 0.63 0.70 0.52 0.60 0.67 0.73
Curation Corpus bpb 0.69 0.63 0.56 0.52 0.68 0.64 0.57 0.51 0.66 0.61 0.55 0.50
Wikitext103 Perplexity 25.62 19.29 13.98 10.65 25.88 19.78 13.89 10.40 3.32 2.96 2.53 2.22
Wikipedia Sept. 2021 bpb 0.85 0.78 0.71 0.65 0.86 0.79 0.71 0.65 0.79 0.73 0.66 0.61

overlap 𝑟(𝐶). We show histograms in Fig. 10. We can see that 𝐶4 has some slight overlaps between
train and evaluation. Similarly, chunks of Wikitext103 appear in the training set despite having
removed the actual Wikitext103 evaluation documents from the training set. On the other hand, our
Wikipedia September 21 dataset shows almost no leakage (data being original documents that did
not exist at training data creation), and neither does Curation Corpus.

Filtered results on the Pile. We report chunk overlap distribution and filtered performance curves
on the Pile in Fig. 12 and Fig. 11, respectively. The qualitative interpretation of the filtered curves
is the same: Retro models exploit leakage more, but the performance improvement they provide
remains significant even on original chunks that haven’t been observed in the training set.
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Table 15 | Full results on The Pile, measured in bits-per-bytes. Jurassic-1 and GPT-3 numbers are
taken from Lieber et al. (2021). Gopher numbers are taken from Rae et al. (2021).

Subset 7B Baseline (Ours) GPT-3 Jurassic-1 Gopher 7.5B Retro
arxiv 0.742 0.838 0.680 0.641 0.714
books3 0.792 0.802 0.835 0.706 0.653
dm_mathematics 1.177 1.371 1.037 1.135 1.164
freelaw 0.576 0.612 0.514 0.506 0.499
github 0.420 0.645 0.358 0.367 0.199
gutenberg_pg_19 0.803 1.163 0.890 0.652 0.400
hackernews 0.971 0.975 0.869 0.888 0.860
nih_exporter 0.650 0.612 0.590 0.590 0.635
opensubtitles 0.974 0.932 0.879 0.894 0.930
philpapers 0.760 0.723 0.742 0.682 0.699
pile_cc 0.771 0.698 0.669 0.688 0.626
pubmed_abstracts 0.639 0.625 0.587 0.578 0.542
pubmed_central 0.588 0.690 0.579 0.512 0.419
stackexchange 0.714 0.773 0.655 0.638 0.624
ubuntu_irc 1.200 0.946 0.857 1.081 1.178
uspto_backgrounds 0.603 0.566 0.537 0.545 0.583
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Figure 10 | Distribution of the overlap between evaluation and train chunks for C4, Curation
Corpus, Wikitext103 and Wikipedia Sept. 2021.
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Figure 11 | Filtered evaluation losses on the Pile, with baseline Transformers and Retro.
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Table 16 | Great Circle (novel), from Wikipedia September 21. The article is about a recent novel and chunks
𝐶3 and 𝐶4 are specifically about its reception. The name Publishers Weekly of the journal that reviewed the
novel appears both in the neighbours [𝑁1

3 , 𝐹
1
3], [𝑁

2
3 , 𝐹

2
3] of chunk 𝐶3 and in the subsequent chunk 𝐶4, where the

loss for those tokens is significantly reduced by Retro.

𝐶𝑢 colored by loss difference 𝐶𝑢 colored by LCP with Ret (𝐶𝑢−1) [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

𝐿Retro[Off] − 𝐿Retro6 −0.5,= 0, > 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5
Great Circle (novel)Great Circle i Great Circle (novel) Great Circle i The Dutch House (novel)The Dutch H The Dutch House (novel)The Dutch H
s a 2021 novel by Maggie Shipstead, s a 2021 novel by Maggie Shipstead, ouse is a 2019 novel by Ann Patchett ouse is a 2019 novel by Ann Patchett
published on May 4, 2021, by Alfred published on May 4, 2021, by Alfred . It was published by Harper on Sept . It was published by Harper on Sept
A. Knopf.The novel has been shortl A. Knopf. The novel has been shortl ember 24, 2019. It tells the story o ember 24, 2019. It tells the story o
isted for the 2021 Booker Prize.Sy isted for the 2021 Booker Prize. Sy f a brother and sister over the cour f a brother and sister over the cour
nopsis The novel consists of two pa nopsis The novel consists of two pa se of five decades.The novel was a se of five decades.[2]The novel wa
rallel narratives about two fictiona rallel narratives about two fictiona finalist for the 2020 Pulitzer Priz s a finalist for the 2020 Pulitzer P
l women. One is l women. One is e for Fiction.PlotThe Dutch House rize for Fiction.[3]Plot[edit]Th

is a mansion located in Elkins Park e Dutch House is a mansion located i
, Pennsylvania, a suburb of Philadel n Elkins Park, Pennsylvania, a subur
phia. It was built in 1922 by the Va b of Philadelphia. It was built in 1
nHoebeek family, a husband and wife 922 by the VanHoebeek family, a husb
originally from the Netherlands who and and wife originally from the Net
made their fortune in the tobacco in herlands who made their fortune in t
dustry. Cyril Conroy, a self-made re he tobacco industry. Cyril Conroy, a
al estate mogul self-

about the disappeared 20th-century about the disappeared 20th-century on becoming a filmmaker. She has fo based closely on her own youthful e
aviator Marian Graves, while the oth aviator Marian Graves, while the oth und a subject for her film project, xperiences. (She plans the film to b
er is about the struggling 21st-cent er is about the struggling 21st-cent an obscure African American actress e the first of two parts, the second
ury Hollywood actress Hadley Baxter, ury Hollywood actress Hadley Baxter, credited only as “the watermelon wom dealing with the aftermath of the f
who is attempting to make a film ab who is attempting to make a film ab an” in old Hollywood films, and the irst’s events.) Byrne plays a young
out Marian. Hadley’s narrative is to out Marian. Hadley’s narrative is to subsequent film recounts her search film student named Julie (Hogg’s ava
ld in the first-person, while Marian ld in the first-person, while Marian for this woman even as it covers, in tar), who starts her artistic educat
’s sections are told in the third-pe ’s sections are told in the third-pe the manner of the earlier Dunyement ion with high hopes of making a movi
rson rson aries, Dunye’s friendships and her l e about a boy named Tony, living in

ove life. InThe Watermelon Woman, D working-class Sunderland, who adores
unye makes the film she set out to m his mother — “is almost obsessed wi
ake in 1990 about African American w th her,” as eager Julie tells her ad
omen artists, a film that both inven visers. Her idealism is evident from
ts an artistic predecessor with whom the start.The advisers are skepti
she can identify and also “finds” C cal, and no wonder; Julie’s family i
heryl herself as the artist that she s posh, with a comfortable country e
seeks. As Dunye identifies herself state and

.Reception Great Circle received .Reception Great Circle received first edition hardcoverReception The book also debuted at number tw
very favorable reviews, with a cumul very favorable reviews, with a cumul The novel debuted at number one on T o on The New York Times Hardcover No
ative "Rave" rating at the review ag ative "Rave" rating at the review ag he New York Times fiction best-selle nfiction best-sellers list on July 2
gregator website Book Marks, based o gregator website Book Marks, based o r list. As of the week ending Februa 8, 2019.[5] It spent eleven weeks on
n 22 book reviews from mainstream li n 22 book reviews from mainstream li ry 20, 2021, the novel has spent 38 the list.[6]Reception[edit]At t
terary critics. The novel debuted at terary critics. The novel debuted at weeks on the list.At the review ag he review aggregator website Book Ma
number fourteen on The New York Tim number fourteen on The New York Tim gregator website Book Marks, which a rks, which assigns individual rating
es Hardcover fiction best-seller lis es Hardcover fiction best-seller lis ssigns individual ratings to book re s to book reviews from mainstream li
t for the week ending May t for the week ending May views from mainstream literary criti terary critics, the book received a

cs, the novel received a cumulative cumulative "Positive" rating based o
"Rave" rating based on 38 reviews, w n 29 reviews: 12 "Rave" reviews, 6 "
ith only one "mixed" review. Publish Positive" reviews, 9 "Mixed" reviews
ers Weekly wrote, "Bennett renders h , and 2 "Pan" reviews.[7]Publisher
er characters and their struggles wi s Weekly gave the book a mixed revie
th great compassion, and explores th w, writing, "Unfortunately, all thre
e complicated state of mind that Ste e
lla finds herself in while passing a
s white." In its

8, 2021. Critics praised the novel 8, 2021. Critics praised the novel
for sustaining its length and for Sh for sustaining its length and for Sh
ipstead’s research and intricate nov ipstead’s research and intricate nov
el structure for perfectly interweav el structure for perfectly interweav
ing the parallel narratives, despite ing the parallel narratives, despite
the time and circumstances separati the time and circumstances separati
ng them.In its starred review, Pub ng them.In its starred review, Pub
lishers Weekly wrote, "Shipstead man lishers Weekly wrote, "Shipstead man
ages to portray both Marian’s and Ha ages to portray both Marian’s and Ha
dley’s dley’s
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Table 17 | All-Ireland Senior Football Championship Final, from Wikipedia September 21. The name of
the team Tyrone appears both in the second neighbours [𝑁2

1 , 𝐹
2
1] of chunk 𝐶1 and in the subsequent chunk 𝐶2,

where the loss for those tokens is significantly reduced by Retro.

𝐶𝑢 colored by loss difference 𝐶𝑢 colored by LCP with Ret (𝐶𝑢−1) [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

𝐿Retro[Off] − 𝐿Retro6 −0.5,= 0, > 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5
2021 All-Ireland Senior Football Cha 2021 All-Ireland Senior Football Cha 2018 All-Ireland Senior Football Cha 2018 All-Ireland Senior Football Cha
mpionship FinalThe 2021 All-Irelan mpionship Final The 2021 All-Irelan mpionship FinalThe 2018 All-Irelan mpionship FinalThe 2018 All-Irelan
d Senior Football Championship Final d Senior Football Championship Final d Senior Football Championship Final d Senior Football Championship Final
was the 134th final of the All-Irel was the 134th final of the All-Irel was the 131st final of the All-Irel was the 131st final of the All-Irel
and Senior Football Championship and and Senior Football Championship and and Senior Football Championship and and Senior Football Championship and
the culmination of the 2021 All-Ire the culmination of the 2021 All-Ire the culmination of the 2018 All-Ire the culmination of the 2018 All-Ire
land Senior Football Championship. T land Senior Football Championship. T land Senior Football Championship in land Senior Football Championship in
he match was played at Croke Park in he match was played at Croke Park in Gaelic football. The match was play Gaelic football. The match was play
Dublin on 11 September 2021. It was Dublin on 11 September 2021. It was ed at Croke Park in Dublin on 2 Sept ed at Croke Park in Dublin on 2 Sept
originally scheduled originally scheduled ember 2018.[3]It was the second ti ember 2018.It was the second time

me the teams had met in the final; D the teams had met in the final; Dubl
ublin won the first encounter in 199 in won the first encounter in 1995.
5.The final was shown live in Irel It was the third consecutive year th
and on RTÉ Two as part of The Sunday at a team qualified under the system
Game live programme, presented by M of second chances introduced in 200
ichael Lyster from Croke Park, with 1; Tyrone qualified despite defeat i
studio analysis from Joe Brolly, n its provincial championship.Dubl

in won the final by a margin of six
points

for 28 August but had to be postpon for 28 August but had to be postpon game 23–23 after extra time, howeve with a last-ditch plan of action –
ed by two weeks when the – semi-fina ed by two weeks when the – semi-fina r Ulster progressed under the compet play the Munster/Ulster Semi-Final o
l was postponed due to a COVID-19 ou l was postponed due to a COVID-19 ou ition rules as they scored three tir n March 16th, with the winners to pl
tbreak. Ulster champions Tyrone took tbreak. Ulster champions Tyrone took es in the match against Leinster’s t ay Connacht in the following day’s F
on Connacht champions Mayo, in what on Connacht champions Mayo, in what wo. The semi-finals took place in mi inal.On March 16th then Munster ha
was their first ever meeting in a f was their first ever meeting in a f d November and saw both the away tea d an easy win over Ulster (9-07 to 0
inal, winning their 4th title after inal, winning their 4th title after ms win, as Ulster beat Glasgow and E -00) but thankfully for the Munster
a 2–14 to 0–15 win. Mayo lost a 2–14 to 0–15 win. Mayo lost dinburgh beat Connacht. The final wa players, the pitch cut up so badly d

s held on Saturday December 20 at Mu uring the game, it was decided to po
rrayfield Stadium and saw Ulster bea stpone the following day’s hurling F
t Edinburgh 21–27 to win the Celtic inal (until Easter Sunday) with the
Cup.2004–05 seasonThe format of football Final going ahead on its ow
the competition was changed for the n on St. Patrick’s Day.Less than a
second edition of the competition. T week later, on March 23rd, seven
he competition was moved to April an
d May to run after the conclusion of
the Celtic League competition, with
only eight

their 11th consecutive final since their 11th consecutive final since 1-16 to 0-15 winners to qualify for which Dublin won by 0-12 to 0-9.D
1989, losing 6 finals in 9 years, wi 1989, losing 6 finals in 9 years, wi their 10th league final in the past ublin are going for an unprecedented
th this latest defeat on an identica th this latest defeat on an identica 13 years.They have won seven of t fourth successive Championship win
l scoreline to 2020, when Mayo lost l scoreline to 2020, when Mayo lost heir previous league finals under Co over Kerry. Prior to their current r
to Dublin.Background were aiming to Dublin.Background were aiming dy since 2002, losing the other two un, which started with the 2011 All-
to win their fourth title and first to win their fourth title and first to Waterford (2007 ) and Dublin (201 Ireland final, they had only managed
All-Ireland since 1951. Since then, All-Ireland since 1951. Since then, 1 ).Despite the defeat there were two consecutive victories over them
they had lost ten finals (1989, 1996 they had lost ten finals (1989, 1996 some distinct positives from a Galwa on two separate occasions - 1909 an
, 1997, 2004, 2006, , 1997, 2004, 2006, y perspective- most notably the soli d ’24, 1976 and ’77.The longest wi

d displays of Daithí Burke at centre nning sequence in the rivalry was se
-back, Joseph Cooney at wing-back an t by Kerry between 1941 and 1975, wh
d Ronan Burke at full-back. Colm Cal en they won each of the six Champion
lanan continued his excellent form i ship meetings. Kerry went nine games
n goal and also hit a stunning free unbeaten between 1978 and 2009, wit
from distance.Indeed it was not th h four victories either side of a dr
e Galway defence that was the proble amatic draw at the quarter-final sta
m ge in Thurles in 2001.Sunday will

mark their 11th

2012, 2013, 2016, 2017, 2020). app 2012, 2013, 2016, 2017, 2020). app
eared in their seventh final, winnin eared in their seventh final, winnin
g on three occasions in 2003, 2005 a g on three occasions in 2003, 2005 a
nd 2008.This final was the fifth to nd 2008.This final was the fifth to
be contested by county teams from C be contested by county teams from C
onnacht and Ulster, the other finals onnacht and Ulster, the other finals
were 1925 (Galway beat Cavan), 1943 were 1925 (Galway beat Cavan), 1943
(Roscommon beat Cavan), 1948 (Cavan (Roscommon beat Cavan), 1948 (Cavan
beat beat
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Table 18 | 2020 Summer Paralympics, from Wikipedia September 21. The original dates of the event,
25 August to 6 September 2020, appears both in the neighbors [𝑁1

1 , 𝐹
1
1], [𝑁

2
1 , 𝐹

2
1] of chunk 𝐶1 and in the

subsequent chunk 𝐶2, where the loss for those tokens is significantly reduced by Retro. Interestingly, in this
case, the neighbors were written at a time when the event hadn’t yet been postponed.

𝐶𝑢 colored by loss difference 𝐶𝑢 colored by LCP with Ret (𝐶𝑢−1) [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

𝐿Retro[Off] − 𝐿Retro6 −0.5,= 0, > 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5
2020 Summer ParalympicsThe , brand 2020 Summer Paralympics The , brand pics Games.* The 2020 Summer Paraly 2020 Summer ParalympicsThe are an
ed as the Tokyo 2020 Paralympic Game ed as the Tokyo 2020 Paralympic Game mpics are an upcoming major internat upcoming major international multi-
s, was an international multi-sport s, was an international multi-sport ional multi-sport event for athletes sport event for athletes with disabi
parasports event held from 24 August parasports event held from 24 August with disabilities governed by the I lities governed by the International
to 5 September 2021 in Tokyo, Japan to 5 September 2021 in Tokyo, Japan nternational Paralympic Committee. S Paralympic Committee. Scheduled as
. They were the 16th Summer Paralymp . They were the 16th Summer Paralymp cheduled as the 16th Summer Paralymp the 16th Summer Paralympic Games, th
ic Games as organized by the Interna ic Games as organized by the Interna ic Games, it is planned to be held i ey are scheduled to be held in Tokyo
tional Paralympic Committee (IPC). tional Paralympic Committee (IPC). n Tokyo, Japan from 25 August to 6 S , Japan between 24 August and 5 Sept

eptember 2020.3. 2019 BWF Para-Bad ember 2021. Originally due to take p
minton World Championships- The 20 lace between 25 August and 6 Septemb
19 BWF Para-Badminton World Champion er 2020. On 24 March 2020, the IOC a
ships was held from 20 to 25 August nd the Tokyo Organizing Committee of
2019 in Basel, Switzerland.- Men’s ficially announced that the 2020 Sum
event: Gold Medal: Pramod Bhagat in mer Olympics and 2020 Summer Paralym
Singles SL3 Event and Pramod Bhagat pics would be postponed to 2021, due
and Manoj to the COVID-19 pandemic, marking t

he first time that the Paralympics h
as been postponed. They will still b
e publicly marketed as

Originally scheduled to take place f Originally scheduled to take place f once submitted.This process was u Olympiad, have now been postponed a
rom 25 August to 6 September 2020, i rom 25 August to 6 September 2020, i ndertaken following the postponement nd rescheduled for 23 July to 8 Augu
n March 2020 both the 2020 Summer Ol n March 2020 both the 2020 Summer Ol of the Tokyo 2020 Games due to the st 2021 in Tokyo, Japan. The Games
ympics and Paralympics were postpone ympics and Paralympics were postpone COVID-19 pandemic, with both the Oly were postponed in March 2020 as a re
d by one year due to the COVID-19 pa d by one year due to the COVID-19 pa mpics and Paralympics pushed back a sult of the worldwide Covid-19 pande
ndemic, with the rescheduled Games s ndemic, with the rescheduled Games s year.Now, the Tokyo 2020 Olympics mic, although they will still keep t
till referred to as Tokyo 2020 for m till referred to as Tokyo 2020 for m are scheduled for July 23 to August he name Tokyo 2020 for marketing and
arketing and branding purposes. As arketing and branding purposes. As 8 while the Paralympics are due to f branding purposes. This will be th
with the Olympics, the Games were la with the Olympics, the Games were la ollow from August 24 to September 5. e first time the Olympic Games have
rgely held behind rgely held behind The refund process is separate for been postponed rather than cancelled

ticketholders outside of Japan, who .
purchased tickets through authorise
d ticket resellers (ATR).Each ATR
has its own individual refund proced
ure.Early figures from the refund
process for the Tokyo 2020 Olympics
stated that around 18 per cent

closed doors with no outside specta closed doors with no outside specta has been rescheduled to May 1-4 bec Olympic Games, when Tokyo became th
tors due to a state of emergency in tors due to a state of emergency in ause of travel restrictions under th e first city in Asia to host the Oly
the Greater Tokyo Area and other pre the Greater Tokyo Area and other pre e current state of emergency in Toky mpic and Paralympic Games, but unfor
fectures. The Games were the second fectures. The Games were the second o and other 10 prefectures across Ja tunately strong winds made it an imp
Summer Paralympics hosted by Tokyo s Summer Paralympics hosted by Tokyo s pan.The Tokyo 2020 organizing comm ossible task this time around.Memb
ince 1964, and the third Paralympics ince 1964, and the third Paralympics ittee announced that the first of 18 ers of the Tokyo Organising Committe
held in Japan overall since the 199 held in Japan overall since the 199 test events for the Olympic and Par e of the Olympic and Paralympic Game
8 Winter Paralympics in Nagano. Th 8 Winter Paralympics in Nagano. Th alympic Games will involve wheelchai s (Tokyo 2020), Tokyo Metropolitan G
e Games featured e Games featured r rugby, which will be held in Yoyog overnment officials, Tokyo 2020 Torc

i National Stadium from April 3 to 4 h Relay Official Ambassadors and rep
.The FINA Diving World Cup will fo resentatives from Miyagi Prefecture
llow from April 18 to 23 at the Toky joined the arrival ceremony.FLAME
o Aquatics Centre, which will also s OF RECOVERYThe Olympic flame will
erve as an Olympic qualifying event. now be put on display at various loc
The spread of the COVID-19 pandemi ations in the Tohoku region, to high
c has slowed down in Tokyo three wee light the message of hope in the are
ks after the Japanese capital entere as worst affected by the 2011 Great
d a state of emergency on East Japan Earthqu

539 medal events in 22 sports, with 539 medal events in 22 sports, with
badminton and taekwondo both making badminton and taekwondo both making
their Paralympic debut to replace f their Paralympic debut to replace f
ootball 7-a-side and sailing. China ootball 7-a-side and sailing. China
topped the medal table for the fifth topped the medal table for the fifth
consecutive Paralympics, with 96 go consecutive Paralympics, with 96 go
lds and 207 total medals. Great Brit lds and 207 total medals. Great Brit
ain finished second for the ninth t ain finished second for the ninth t
ime, ime,
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Table 19 | Daniel Radcliffe, from Wikitext103Valid, retrieval data from c4. The chunks 𝐶2 and 𝐶3 are almost
entirely retrieved from neighbours [𝑁1, 𝐹1] and [𝑁2, 𝐹2] respectively, up to formatting differences, which
dramatically reduces the loss for these tokens. This example illustrates that when training data leaks into
evaluation sets despite deduplication, our Retro model can directly exploit this leakage.

𝐶𝑢 colored by loss difference 𝐶𝑢 colored by LCP with Ret (𝐶𝑢−1) [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

𝐿Retro[Off] − 𝐿Retro6 −0.5,= 0, > 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5
= Daniel Radcliffe =Daniel Jacob R = Daniel Radcliffe = Daniel Jacob R Daniel Jacob Radcliffe (born 23 July Daniel Jacob Radcliffe (born 23 July
adcliffe ( born 23 July 1989 ) is an adcliffe ( born 23 July 1989 ) is an 1989) is an English actor who rose 1989) is an English actor who rose
English actor who rose to prominenc English actor who rose to prominenc to prominence as the title character to prominence as the title character
e as the title character in the Harr e as the title character in the Harr in the Harry Potter film series. He in the Harry Potter film series. He
y Potter film series. He made his ac y Potter film series. He made his ac made his acting debut at 10 years o made his acting debut at 10 years o
ting debut at 10 years of age in BBC ting debut at 10 years of age in BBC f age in BBC One’s 1999 television f f age in BBC One’s 1999 television m
One’s 1999 television film David Co One’s 1999 television film David Co ilm David Copperfield, followed by h ovie David Copperfield, followed by
pperfield, followed by his cinematic pperfield, followed by his cinematic is cinematic debut in 2001’s The Tai his film debut in 2001’s The Tailor
debut debut lor of Panama. At age 11, he was cas of Panama. At age 11, he was cast as

t as Harry Potter in the first Harry Harry Potter in the first Harry Pot
Potter film, and starred in the ser ter film, and starred in the series
ies for 10 years until the release o for 10 years until the release of th
f the eighth and final film in 2011. e eighth and final film in 2011. Rad
Radcliffe began to branch out to s cliffe began to branch out to stage
tage acting in 2007, starring in the acting in 2007, starring in the Lond
London and New York productions of on and New York productions of Equus
Equus, and , and in the

in 2001’s The Tailor of Panama. At in 2001’s The Tailor of Panama. At in 2001’s The Tailor of Panama. At of Panama. At age 11, he was cast a
age 11, he was cast as Harry Potter age 11, he was cast as Harry Potter age 11, he was cast as Harry Potter s Harry Potter in the first Harry Po
in the first Harry Potter film, and in the first Harry Potter film, and in the first Harry Potter film, and tter film, and starred in the series
starred in the series for 10 years u starred in the series for 10 years u starred in the series for 10 years u for 10 years until the release of t
ntil the release of the eighth and f ntil the release of the eighth and f ntil the release of the eighth and f he eighth and final film in 2011.R
inal film in 2011.Radcliffe began inal film in 2011.Radcliffe began inal film in 2011.Radcliffe began adcliffe began to branch out to stag
to branch out to stage acting in 200 to branch out to stage acting in 200 to branch out to stage acting in 200 e acting in 2007, starring in the Lo
7, starring in the London and New 7, starring in the London and New 7, starring in the London and New Yo ndon and New York productions of Equ

rk productions of Equus, and in the us, and in the 2011 Broadway revival
2011 Broadway revival of the musical of the musical How to Succeed in Bu
How to Succeed in Business Without siness Without Really Trying. He sta
Really Trying. He starred in the 201 rred in the 2012 horror film The Wom
2 horror film The Woman in Black, an an in Black, and played beat poet Al
d played beat poet Allen Ginsberg in len Ginsberg in the 2013 independent
the 2013 independent film Kill Your film Kill Your Darlings. He has con
Darlings.He has contributed to ma tributed to many charities, includin
ny charities g Demelza House Children’s

York productions of Equus, and in t York productions of Equus, and in t York productions of Equus, and in t in the 2011 Broadway revival of the
he 2011 Broadway revival of the musi he 2011 Broadway revival of the musi he 2011 Broadway revival of the musi musical How to Succeed in Business
cal How to Succeed in Business Witho cal How to Succeed in Business Witho cal How to Succeed in Business Witho Without Really Trying. He starred in
ut Really Trying. He starred in the ut Really Trying. He starred in the ut Really Trying. He starred in the the 2012 horror film The Woman in B
2012 horror film The Woman in Black, 2012 horror film The Woman in Black, 2012 horror film The Woman in Black, lack, and played beat poet Allen Gin
and played beat poet Allen Ginsberg and played beat poet Allen Ginsberg and played beat poet Allen Ginsberg sberg in the 2013 independent film K
in the 2013 independent film Kill Y in the 2013 independent film Kill Y in the 2013 independent film Kill Y ill Your Darlings. He has contribute
our <unk>.He has contributed to ma our <unk>.He has contributed to ma our Darlings.He has contributed to d to many charities, including Demel
ny charities, ny charities, many charities, including Demelza H za House Children’s Hospice and The

ouse Children’s Hospice and The Trev Trevor Project. He also made public
or Project. He also made public serv service announcements for the latter
ice announcements for the latter. In . In 2011, he was awarded the Trevor
2011, he was awarded the Trevor Pro Project’s "Hero Award."
ject’s "Hero Award."Sources disagr
ee about Radcliffe’s personal wealth
; he was reported to have earned £1
million for the first Harry Potter

including <unk> Hospice Care for Ch including <unk> Hospice Care for Ch
ildren, and The Trevor Project for s ildren, and The Trevor Project for s
uicide prevention among LGBTQ youth, uicide prevention among LGBTQ youth,
which gave him its Hero Award in 20 which gave him its Hero Award in 20
11.= = Early life = =Radcliffe w 11.= = Early life = =Radcliffe w
as born in West London, England. He as born in West London, England. He
is the only child of Alan George Rad is the only child of Alan George Rad
cliffe, a literary agent, and cliffe, a literary agent, and
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Table 20 | Sample - Déclaration des droits de l’homme: Article premier. The Retro[Off] sample has
correct syntax and is almost plausible but is hallucinated. The Retro[On] sample is correctly copied from
neighbour data, and robustly re-formated according to our prompt.

Prompt and sample of Retro[Off] Prompt and sample of Retro[On] [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

colored by LCP with Ret (𝐶𝑢−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

Article premier - Les hommes Article premier - Les hommes de l’homme et du citoyen.Ar Les hommes naissent et demeur
naissent et demeurent libres e naissent et demeurent libres e ticle 1erLes hommes naissent ent libres et égaux en droits.
t égaux en droits. Les distinc t égaux en droits. Les distinc et demeurent libres et égaux Les distinctions sociales ne
tions sociales ne peuvent être tions sociales ne peuvent être en droits. Les distinctions so peuvent être fondées que sur l
fondées que sur l’utilité com fondées que sur l’utilité com ciales ne peuvent être fondées ’utilité commune.Art. 2. -
mune. Article 2. - Le but de mune. Article 2. - Le but de que sur l’utilité commune.A Le but de toute association po
toute association politique e toute association politique e rticle 2Le but de toute asso litique est la conservation de
st la conservation des droits st la conservation des droits ciation politique est la conse s droits naturels et imprescri
naturels et naturels et rvation des droits naturels et ptibles de l’Homme. Ces droits

imprescriptibles de l’homme. sont la liberté, la propriété
Ces droits sont la liberté, la , la sûreté, et la résistance
propriété, la sûreté, et la r à l’oppression.Art. 3. -Le
ésistance à l’oppression.Art principe de toute Souverainet
icle 3Le principe de toute s é réside essentiellement dans
ouveraineté réside essentielle la Nation. Nul corps, nul indi
ment dans la nation. Nul corps vidu ne peut exercer d’autorit
, nul individu ne peut exercer é qui n’en émane expressément.
d’autorité qui n’en Art

imprescriptibles de l’homme, imprescriptibles de l’homme. criptibles del’homme. Ces dro et imprescriptibles de l’homm
et par conséquent la garantie Ces droits sont la liberté, la its sont la liberté, la propri e. Ces droits sont la liberté,
à chacun des droits suivants propriété, la sûreté et la ré été, la sûretéet la résistanc la propriété, la sûreté et la
: Article 3. - La propriété sistance à l’oppression.Arti e à l’oppression.Article 3 - résistance à l’oppression.A
est un droit inviolable et sa cle 3.- Le principe de toute Le principe de toute souverai rticle 3 - Le principe de tout
cré. Toute personne a le droit souveraineté réside essentiel neté résideessentiellement da e souveraineté réside essentie
de procéder à sa propre cons lement dans la nation. Nul cor ns la Nation. Nul corps, nul i llement dans la Nation. Nul co
ervation. Article 4. - Le ps, nul individu ne peut exerc ndividu nepeut exercer d’auto rps, nul individu ne peut exer

er d’autorité qui n rité qui n’en émane expresséme cer d’autorité qui n’en émane
nt.Article 4 - La liberté co expressément.Article 4 - La
nsiste à pouvoir faire tout ce liberté consiste à pouvoir fai
quine nuit pas à autrui : ai re tout ce qui ne nuit pas à a
nsi, l’exercice des droits nat utrui : ainsi, l’exercice des
urelsde chaque homme n’a de b droits naturels de chaque homm
ornes que celles qui assurent e n’a de bornes que celles qui
auxautres membres de la socié assurent aux autres membres d
té la jouissance de e la société la jouissance de

ces mêmes droits. Ces bornes

but de toute association est ’en émane expressément.Artic mane expressément.Article 4 mane expressément.Article 4
la défense des droits de l’hom le 4.- La liberté consiste à - La liberté consiste à pouvoi - La liberté consiste à pouvoi
me et du citoyen. Tout citoye pouvoir faire tout ce qui ne r faire tout ce qui ne nuit pa r faire tout ce qui ne nuit pa
n a le droit de participer à l nuit pas à autrui : ainsi, l’e s à autrui : ainsi, l’exercice s à autrui : ainsi, l’exercice
a direction des affaires publi xercice des droits naturels de des droits naturels de chaque des droits naturels de chaque
ques. Article 5. - L’impuni chaque homme n’a de bornes qu homme n’a de bornes que celle homme n’a de bornes que celle
té n’a jamais été et ne sera j e celles qui assurent aux autr s qui assurent aux autres memb s qui assurent aux autres memb
amais une fin en elle-même. L’ es membres de la société la jo res de la société la jouissanc res de la société la jouissanc
imp uissance de ces mêmes e de ces mêmes droits. Ces bor e de ces mêmes droits. Ces bor

nes ne peuvent être déterminée nes ne peuvent être déterminée
s que par la loi.Article 5 - s que par la loi.Article 5 -
La loi n’a le droit de défend La loi n’a le droit de défend
re que les actions nuisibles à re que les actions nuisibles à
la société. Tout ce qui n’est la société. Tout ce qui n’est
pas défendu par la loi ne peu pas défendu par la loi ne peu
t être empêché, et nul ne peut t être empêché, et nul ne peut
être contraint à faire ce qu’ être contraint à faire ce qu’
elle n elle n

unité, comme le despotisme, s droits. Ces bornes ne peuvent
’est toujours révélée être un être déterminées que par la l
instrument d’oppression. La ty oi.Article 5.- La loi n’a
rannie qui s’est élue juge su le droit de défendre que les a
prême de la conscience des aut ctions nuisibles à la société.
res ne peut être jugée. La jus Tout ce qui n’est pas défendu
tice se trouve dans la consci par la loi ne peut être empêc
ence de chaque citoyen, hé, et nul ne peut être
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Table 21 | Sample - Decimals of 𝜋. The Retro[Off] sample quickly diverges two digits after the end
of the prompt whereas Retro[On] correctly outputs a large number of 𝜋 digits, directly copied from the
neighbours data.

Prompt and sample of Retro[Off] Prompt and sample of Retro[On] [𝑁1
𝑢 , 𝐹

1
𝑢 ] colored by LCP with 𝐶𝑢+1 [𝑁2

𝑢 , 𝐹
2
𝑢 ] colored by LCP with 𝐶𝑢+1

colored by LCP with Ret (𝐶𝑢−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

Pi = 3. 1415926535 8979323846 Pi = 3. 1415926535 8979323846 “1415926535 8979323846 26433 46 2643383279 5028841971 69399
2643383279 5028841971 69399375 2643383279 5028841971 69399375 83279 5028841971 693993751058 37510 5820974944 592307816406
10 5820974944 5923078164 06286 10 5820974944 5923078164 06286 20974944 5923078164 0628620899 28620899 8628034825 3421170679
20899 8628034825 3421170679 20899 8628034825 3421170679 8628034825 34211706798214808 8214808651 3282306647 0938446

651 3282306647 0938446095 5058 095 50582231725359408128 4811
223172 53594081284811174502 8 174502 8410270193 8521105559 6
410270193 8521105559 644622948 446229489 5493038196 442881097
9 54930381964428810975 665933 56659334461 2847564823 378678
4461 2847564823 3786783 3165 2712019091 4564856692 346

0

8294049602 8988496069 9858349 8214808651 3282306647 0938446 651 3282306647 0938446095 5058 47 0938446095 5058223172 53594
065 9873246379 9644789435 8628 095 5058223172 53594081284811 223172 5359408128 4811174502 081284811174502 8410270193 85
730709 6540159079 5944069810 5 174502 8410270193 8521105559 6 8410270193 8521105559 64462294 21105559 6446229489 5493038196
992965913 7095378412 69378359 446229489 5493038196442881097 89 54930381964428810975 66593 4428810975 6659334461 2847564

5 6659334461 284 34461 2847564823 3786783165 27 823 3786783165 27120190914564
12019091 4564856692 346034861 856692 3460348610 4543266482 1
0 4543266482 1339360726 024914 339360726 0249141273724587006
12737245870066 0631558817 488 6 0631558817 4881520920 962829
1520920 9628292540 91715364 2540 91715364367892590360

10 6940372045 7088679512 85612 7564823 3786783165 2712019091 23 3786783165 2712019091 4564 165 27120190914564856692 3460
30857 9046461290 9276642155 56 4564856692 3460348610 45432664 856692 3460348610 4543266482 1 348610 4543266482 1339360726 0
54603269 5656128798 6366475705 82 1339360726 024914127372458 339360726 0249141273724587006 2491412737245870066 063155881
6294954741 5886335339 57657 70066 0631558817 4881520920 96 6 0631558817 4881520920 962829 7 4881520920 9628292540 917153

28292540 91715 2540 9171536436 7892590360 01 64367892590360 0113305305 488
13305305 4882046652 1384146951 2046652 1384146951 9415116094
94151160943305727036 5759591 3305727036 5759591953 09218611
953 0921861173 8193261179 3105 73 8193261179 310511854807446
118548 0744623799 627495 23799 6274956735 1885752724 89

1227

76345 5770886953 7988876910 79 364367892590360 0113305305 48
66169745 6493974637 6345801550 82046652 1384146951 9415116094
6663542854 6333764630 6356284 3305727036 5759591953 0921861
271 7885339804 5672434 173 8193261179 31051185480744

623799 6274
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