shaikhadil26 commited on
Commit
15328c8
1 Parent(s): 39931d7

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: layoutlm-sroie
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-sroie
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0732
20
+ - Address: {'precision': 0.9800577276305432, 'recall': 0.9813452443510247, 'f1': 0.9807010634107917, 'number': 3806}
21
+ - Company: {'precision': 0.9241157556270096, 'recall': 0.9862731640356898, 'f1': 0.9541832669322708, 'number': 1457}
22
+ - Date: {'precision': 0.9520383693045563, 'recall': 0.9706601466992665, 'f1': 0.9612590799031476, 'number': 409}
23
+ - Total: {'precision': 0.6638888888888889, 'recall': 0.6675977653631285, 'f1': 0.6657381615598885, 'number': 358}
24
+ - Overall Precision: 0.9455
25
+ - Overall Recall: 0.9632
26
+ - Overall F1: 0.9542
27
+ - Overall Accuracy: 0.9863
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Address | Company | Date | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 0.4342 | 1.0 | 40 | 0.0876 | {'precision': 0.974816369359916, 'recall': 0.976353126642144, 'f1': 0.9755841428196377, 'number': 3806} | {'precision': 0.8865598027127004, 'recall': 0.9869595058339052, 'f1': 0.9340695030854174, 'number': 1457} | {'precision': 0.8112449799196787, 'recall': 0.9877750611246944, 'f1': 0.8908489525909592, 'number': 409} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 358} | 0.9370 | 0.9217 | 0.9293 | 0.9794 |
60
+ | 0.0586 | 2.0 | 80 | 0.0591 | {'precision': 0.9761780104712042, 'recall': 0.9797687861271677, 'f1': 0.977970102281668, 'number': 3806} | {'precision': 0.9187301587301587, 'recall': 0.9931365820178449, 'f1': 0.954485488126649, 'number': 1457} | {'precision': 0.8975501113585747, 'recall': 0.9853300733496333, 'f1': 0.9393939393939394, 'number': 409} | {'precision': 0.7073170731707317, 'recall': 0.40502793296089384, 'f1': 0.5150976909413854, 'number': 358} | 0.9463 | 0.9493 | 0.9478 | 0.9844 |
61
+ | 0.039 | 3.0 | 120 | 0.0569 | {'precision': 0.975006508721687, 'recall': 0.9839726747241198, 'f1': 0.9794690728390218, 'number': 3806} | {'precision': 0.9282970550576184, 'recall': 0.9951956074124915, 'f1': 0.9605829744948658, 'number': 1457} | {'precision': 0.9232558139534883, 'recall': 0.9706601466992665, 'f1': 0.9463647199046483, 'number': 409} | {'precision': 0.6103542234332425, 'recall': 0.6256983240223464, 'f1': 0.6179310344827587, 'number': 358} | 0.9381 | 0.9645 | 0.9511 | 0.9852 |
62
+ | 0.0312 | 4.0 | 160 | 0.0546 | {'precision': 0.9765135699373695, 'recall': 0.9831844456121913, 'f1': 0.9798376538360828, 'number': 3806} | {'precision': 0.9276105060858424, 'recall': 0.9938229238160604, 'f1': 0.9595758780649436, 'number': 1457} | {'precision': 0.9473684210526315, 'recall': 0.9682151589242054, 'f1': 0.9576783555018137, 'number': 409} | {'precision': 0.6116504854368932, 'recall': 0.7039106145251397, 'f1': 0.6545454545454545, 'number': 358} | 0.9381 | 0.9682 | 0.9529 | 0.9858 |
63
+ | 0.0246 | 5.0 | 200 | 0.0555 | {'precision': 0.9772430028773215, 'recall': 0.9816079873883342, 'f1': 0.9794206317997116, 'number': 3806} | {'precision': 0.9298132646490663, 'recall': 0.9910775566231984, 'f1': 0.959468438538206, 'number': 1457} | {'precision': 0.9537712895377128, 'recall': 0.9584352078239609, 'f1': 0.9560975609756097, 'number': 409} | {'precision': 0.6434108527131783, 'recall': 0.6955307262569832, 'f1': 0.6684563758389261, 'number': 358} | 0.9428 | 0.9653 | 0.9539 | 0.9861 |
64
+ | 0.0206 | 6.0 | 240 | 0.0531 | {'precision': 0.9782893015956056, 'recall': 0.9826589595375722, 'f1': 0.9804692620264778, 'number': 3806} | {'precision': 0.9414088215931534, 'recall': 0.9814687714481812, 'f1': 0.9610215053763441, 'number': 1457} | {'precision': 0.9628712871287128, 'recall': 0.9511002444987775, 'f1': 0.956949569495695, 'number': 409} | {'precision': 0.6811594202898551, 'recall': 0.6564245810055865, 'f1': 0.6685633001422475, 'number': 358} | 0.9512 | 0.9609 | 0.9560 | 0.9868 |
65
+ | 0.0166 | 7.0 | 280 | 0.0579 | {'precision': 0.9767987486965589, 'recall': 0.9844981607987389, 'f1': 0.9806333420570532, 'number': 3806} | {'precision': 0.9272844272844273, 'recall': 0.9890185312285518, 'f1': 0.9571570906675522, 'number': 1457} | {'precision': 0.9562043795620438, 'recall': 0.960880195599022, 'f1': 0.9585365853658536, 'number': 409} | {'precision': 0.6685236768802229, 'recall': 0.6703910614525139, 'f1': 0.6694560669456067, 'number': 358} | 0.9450 | 0.9653 | 0.9550 | 0.9865 |
66
+ | 0.014 | 8.0 | 320 | 0.0614 | {'precision': 0.9785396493064643, 'recall': 0.9823962165002628, 'f1': 0.9804641405532976, 'number': 3806} | {'precision': 0.9277885235332044, 'recall': 0.9876458476321208, 'f1': 0.9567819148936171, 'number': 1457} | {'precision': 0.9585365853658536, 'recall': 0.960880195599022, 'f1': 0.9597069597069597, 'number': 409} | {'precision': 0.6553524804177546, 'recall': 0.7011173184357542, 'f1': 0.6774628879892037, 'number': 358} | 0.9444 | 0.9655 | 0.9548 | 0.9865 |
67
+ | 0.0115 | 9.0 | 360 | 0.0642 | {'precision': 0.9800524934383202, 'recall': 0.9810825013137152, 'f1': 0.9805672268907565, 'number': 3806} | {'precision': 0.9342875731945348, 'recall': 0.9855868222374743, 'f1': 0.9592518370073482, 'number': 1457} | {'precision': 0.9527186761229315, 'recall': 0.9853300733496333, 'f1': 0.9687500000000001, 'number': 409} | {'precision': 0.6483516483516484, 'recall': 0.659217877094972, 'f1': 0.6537396121883657, 'number': 358} | 0.9470 | 0.9633 | 0.9551 | 0.9865 |
68
+ | 0.0103 | 10.0 | 400 | 0.0684 | {'precision': 0.9808197582764057, 'recall': 0.9808197582764057, 'f1': 0.9808197582764057, 'number': 3806} | {'precision': 0.9224358974358975, 'recall': 0.9876458476321208, 'f1': 0.9539277427908518, 'number': 1457} | {'precision': 0.9519230769230769, 'recall': 0.9682151589242054, 'f1': 0.96, 'number': 409} | {'precision': 0.6473684210526316, 'recall': 0.6871508379888268, 'f1': 0.6666666666666667, 'number': 358} | 0.9435 | 0.9642 | 0.9537 | 0.9861 |
69
+ | 0.0084 | 11.0 | 440 | 0.0704 | {'precision': 0.981325618095739, 'recall': 0.9802942722017867, 'f1': 0.9808096740273397, 'number': 3806} | {'precision': 0.9265463917525774, 'recall': 0.9869595058339052, 'f1': 0.9557992688600864, 'number': 1457} | {'precision': 0.9519230769230769, 'recall': 0.9682151589242054, 'f1': 0.96, 'number': 409} | {'precision': 0.6497326203208557, 'recall': 0.6787709497206704, 'f1': 0.6639344262295083, 'number': 358} | 0.9453 | 0.9632 | 0.9542 | 0.9863 |
70
+ | 0.0077 | 12.0 | 480 | 0.0704 | {'precision': 0.9805672268907563, 'recall': 0.9810825013137152, 'f1': 0.9808247964276333, 'number': 3806} | {'precision': 0.931950745301361, 'recall': 0.9869595058339052, 'f1': 0.9586666666666667, 'number': 1457} | {'precision': 0.9544364508393285, 'recall': 0.9731051344743277, 'f1': 0.963680387409201, 'number': 409} | {'precision': 0.6764705882352942, 'recall': 0.6424581005586593, 'f1': 0.6590257879656161, 'number': 358} | 0.9496 | 0.9619 | 0.9557 | 0.9867 |
71
+ | 0.0075 | 13.0 | 520 | 0.0728 | {'precision': 0.9792976939203354, 'recall': 0.9818707304256438, 'f1': 0.9805825242718447, 'number': 3806} | {'precision': 0.9258542875564152, 'recall': 0.9855868222374743, 'f1': 0.9547872340425532, 'number': 1457} | {'precision': 0.9538834951456311, 'recall': 0.960880195599022, 'f1': 0.9573690621193666, 'number': 409} | {'precision': 0.6502732240437158, 'recall': 0.664804469273743, 'f1': 0.6574585635359116, 'number': 358} | 0.9445 | 0.9625 | 0.9534 | 0.9861 |
72
+ | 0.0068 | 14.0 | 560 | 0.0732 | {'precision': 0.9805723286951956, 'recall': 0.9813452443510247, 'f1': 0.9809586342744582, 'number': 3806} | {'precision': 0.9229287090558767, 'recall': 0.9862731640356898, 'f1': 0.953550099535501, 'number': 1457} | {'precision': 0.9520383693045563, 'recall': 0.9706601466992665, 'f1': 0.9612590799031476, 'number': 409} | {'precision': 0.667590027700831, 'recall': 0.6731843575418994, 'f1': 0.6703755215577191, 'number': 358} | 0.9456 | 0.9635 | 0.9545 | 0.9864 |
73
+ | 0.0066 | 15.0 | 600 | 0.0732 | {'precision': 0.9800577276305432, 'recall': 0.9813452443510247, 'f1': 0.9807010634107917, 'number': 3806} | {'precision': 0.9241157556270096, 'recall': 0.9862731640356898, 'f1': 0.9541832669322708, 'number': 1457} | {'precision': 0.9520383693045563, 'recall': 0.9706601466992665, 'f1': 0.9612590799031476, 'number': 409} | {'precision': 0.6638888888888889, 'recall': 0.6675977653631285, 'f1': 0.6657381615598885, 'number': 358} | 0.9455 | 0.9632 | 0.9542 | 0.9863 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.46.2
79
+ - Pytorch 2.5.0+cu121
80
+ - Datasets 3.1.0
81
+ - Tokenizers 0.20.3
logs/events.out.tfevents.1731436984.33c6d5f39c94.178.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b8e380a10b9a1a3a2e251a9cd68c7bed6c03d64b01c5fd4327fe0b6bc2eff6dc
3
- size 15894
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9db9aa79d2c1885fd9758f940f792f76a8dc052e10cf2ba8164fd82cce5ff90e
3
+ size 16248
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:885f3e1161e3f74bebc524f39d106495bbcc2ce058df7e0fb05ec1dc45aeff2d
3
  size 450552060
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f995c852adeb69b96f68436c20f51bda989612c57a9a89ce3fce86b28ddd1a9
3
  size 450552060
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff