sharkMeow commited on
Commit
279dab1
1 Parent(s): 15b8081

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: OFA-Sys/chinese-clip-vit-base-patch16
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: sentance_split_by_time_ocr_concate
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/b55yyize)
16
+ # sentance_split_by_time_ocr_concate
17
+
18
+ This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 3.7882
21
+ - Accuracy: 0.0654
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 25
42
+ - eval_batch_size: 20
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 200
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 60.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-------:|:-----:|:---------------:|:--------:|
55
+ | 2.0902 | 5.9928 | 1866 | 3.0755 | 0.0687 |
56
+ | 1.8876 | 11.9855 | 3732 | 3.2740 | 0.0669 |
57
+ | 1.763 | 17.9783 | 5598 | 3.2469 | 0.0681 |
58
+ | 1.7048 | 23.9711 | 7464 | 3.4242 | 0.0677 |
59
+ | 1.6776 | 29.9639 | 9330 | 3.4987 | 0.0674 |
60
+ | 1.6518 | 35.9566 | 11196 | 3.5633 | 0.0675 |
61
+ | 1.6471 | 41.9494 | 13062 | 3.6389 | 0.0668 |
62
+ | 1.6319 | 47.9422 | 14928 | 3.6843 | 0.0663 |
63
+ | 1.6325 | 53.9350 | 16794 | 3.7068 | 0.0658 |
64
+ | 1.6255 | 59.9277 | 18660 | 3.7882 | 0.0654 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.42.3
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1