--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-banking77-pt2 results: [] datasets: - PolyAI/banking77 --- # bert-base-banking77-pt2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an PolyAI/banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.3089 - F1: 0.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.261 | 1.0 | 313 | 1.0894 | 0.7969 | | 0.5499 | 2.0 | 626 | 0.4196 | 0.9103 | | 0.305 | 3.0 | 939 | 0.3403 | 0.9157 | | 0.1277 | 4.0 | 1252 | 0.3020 | 0.9251 | | 0.0857 | 5.0 | 1565 | 0.2911 | 0.9306 | | 0.0347 | 6.0 | 1878 | 0.2865 | 0.9333 | | 0.0251 | 7.0 | 2191 | 0.2994 | 0.9362 | | 0.0111 | 8.0 | 2504 | 0.2970 | 0.9365 | | 0.0075 | 9.0 | 2817 | 0.3102 | 0.9364 | | 0.0058 | 10.0 | 3130 | 0.3089 | 0.9362 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1 ## How to use ```py from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline ckpt = 'sharmax-vikas/bert-base-banking77-pt2' tokenizer = AutoTokenizer.from_pretrained(ckpt) model = AutoModelForSequenceClassification.from_pretrained(ckpt) classifier = pipeline('text-classification', tokenizer=tokenizer, model=model) classifier('What is the base of the exchange rates?') # Output: [{'label': 'exchange_rate', 'score': 0.9961327314376831}] ```