metadata
base_model:
- shastraai/Shastra-LLAMA-Math-DPO
- shastraai/Shastra-LLAMA2-Commonsense-SFT
tags:
- merge
- mergekit
- lazymergekit
- shastraai/Shastra-LLAMA-Math-DPO
- shastraai/Shastra-LLAMA2-Commonsense-SFT
Shastra-LLAMA2-Math-Commonsense-TIES
Shastra-LLAMA2-Math-Commonsense-TIES is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: shastraai/Shastra-LLAMA-Math-DPO
# no parameters necessary for base model
- model: shastraai/Shastra-LLAMA-Math-DPO
parameters:
density: 0.5
weight: 0.5
- model: shastraai/Shastra-LLAMA2-Commonsense-SFT
parameters:
density: 0.5
weight: 0.3
merge_method: ties
base_model: shastraai/Shastra-LLAMA-Math-DPO
parameters:
normalize: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "shastraai/Shastra-LLAMA2-Math-Commonsense-TIES"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])