--- base_model: - shastraai/Shastra-LLAMA-Math-DPO - shastraai/Shastra-LLAMA2-Commonsense-SFT tags: - merge - mergekit - lazymergekit - shastraai/Shastra-LLAMA-Math-DPO - shastraai/Shastra-LLAMA2-Commonsense-SFT --- # Shastra-LLAMA2-Math-Commonsense-TIES Shastra-LLAMA2-Math-Commonsense-TIES is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [shastraai/Shastra-LLAMA-Math-DPO](https://huggingface.co/shastraai/Shastra-LLAMA-Math-DPO) * [shastraai/Shastra-LLAMA2-Commonsense-SFT](https://huggingface.co/shastraai/Shastra-LLAMA2-Commonsense-SFT) ## 🧩 Configuration ```yaml models: - model: shastraai/Shastra-LLAMA-Math-DPO # no parameters necessary for base model - model: shastraai/Shastra-LLAMA-Math-DPO parameters: density: 0.5 weight: 0.5 - model: shastraai/Shastra-LLAMA2-Commonsense-SFT parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: shastraai/Shastra-LLAMA-Math-DPO parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "shastraai/Shastra-LLAMA2-Math-Commonsense-TIES" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```