shekharkoirala
commited on
Commit
•
d33f98f
1
Parent(s):
88d2071
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- dark-lander.zip +3 -0
- dark-lander/_stable_baselines3_version +1 -0
- dark-lander/data +94 -0
- dark-lander/policy.optimizer.pth +3 -0
- dark-lander/policy.pth +3 -0
- dark-lander/pytorch_variables.pth +3 -0
- dark-lander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 209.18 +/- 39.09
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc7465a9680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc7465a9710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc7465a97a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc7465a9830>", "_build": "<function ActorCriticPolicy._build at 0x7fc7465a98c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc7465a9950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc7465a99e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc7465a9a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc7465a9b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc7465a9b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc7465a9c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc7465ff180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651857345.4937458, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG2U/D7TPCO+WxqcOtchu7xjbn86niSjvQAAgD8AAIA/7YKovuDtij62lPg8RwCBvkrDLr2aujA9AAAAAAAAAADedgy/u2RAvkIPFbvQAo24IqwbPko5/zgAAIA/AACAP+YFlr3DFRe6m7iKO+JZIDhARIA72h/WtwAAgD8AAIA/QI6JPY/aNbq+sqA7JKGMOIrHmzsSxre4AACAPwAAgD/AlB6+qdsMvLaIxbsKb/+5O2NePbsg1DoAAIA/AACAPwCxtj2kkDK5HjOHOY9pgbY04TG7ei2huAAAgD8AAIA/k98cvjx5Mj5Ogxg8lXeNvntXpD1WZlW+AAAAAAAAAAAQkqo+td4aPp40Dz5DBmm+0uM+vps9hL0AAAAAAAAAANqPRz4fIOc87sTGOMl7rjeS34A+/N0duAAAgD8AAIA/zfM6vUhB1zm2UaY6VZi4NT2ko7uVRci5AACAPwAAgD/NkzM9j9Zsuo0/BroZxm61OeW2Oc3VGTkAAIA/AACAP/pYTD4Klls8M39POxQYeDnKzOI9i3F8ugAAgD8AAIA/QM8vvttUr7yf+Z29GmhNvBBfHD4K7CA9AACAPwAAgD9zmKk+B2UdvbbdlrsTnCs6qGhMvuJT4DoAAAAAAACAP5qVr7spTH+63sj4OyRVmjegDgu7W7dWNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeVc9YB5oZ0CUhpRSlIwBbJRN6AOMAXSUR0CEvvubZvkzdX2UKGgGaAloD0MI/wWCAJmWYECUhpRSlGgVTegDaBZHQIUweSW7e2x1fZQoaAZoCWgPQwiKr3YUZ0RgQJSGlFKUaBVN6ANoFkdAhTYe10DEFXV9lChoBmgJaA9DCKYO8nowmllAlIaUUpRoFU3oA2gWR0CFO590A93bdX2UKGgGaAloD0MIEYyDS8dNWkCUhpRSlGgVTegDaBZHQIVF5w84gih1fZQoaAZoCWgPQwiu00hL5W9ZQJSGlFKUaBVN6ANoFkdAhUf2G7Bfr3V9lChoBmgJaA9DCDy+vWvQl9Q/lIaUUpRoFUuuaBZHQIVN9mvnr6d1fZQoaAZoCWgPQwgukKD4MXdfQJSGlFKUaBVN6ANoFkdAhVFC3G4qgHV9lChoBmgJaA9DCCBDxw4qR0hAlIaUUpRoFU3oA2gWR0CFVLrcCYCydX2UKGgGaAloD0MIyZHOwMgqXECUhpRSlGgVTegDaBZHQIVXrb5/LDB1fZQoaAZoCWgPQwicxCCwcvBcQJSGlFKUaBVN6ANoFkdAhVgRPoFFD3V9lChoBmgJaA9DCBeDh2nfKFxAlIaUUpRoFU3oA2gWR0CFYS7MgU1ydX2UKGgGaAloD0MIFRqIZTPnEcCUhpRSlGgVS9xoFkdAhWwUONHYpXV9lChoBmgJaA9DCNRjWwYcx2VAlIaUUpRoFU3oA2gWR0CFc7xaPjn3dX2UKGgGaAloD0MI/RLx1vlHX0CUhpRSlGgVTegDaBZHQIV3WfVZs9B1fZQoaAZoCWgPQwjmIynpYZtiQJSGlFKUaBVN6ANoFkdAhYNbdznzQXV9lChoBmgJaA9DCFneVQ+YYWJAlIaUUpRoFU3oA2gWR0CFlJ/SYw7DdX2UKGgGaAloD0MIJET5gpYDYECUhpRSlGgVTegDaBZHQIWYid4FA3V1fZQoaAZoCWgPQwjRItv5fpZgQJSGlFKUaBVN6ANoFkdAhZoyt/4Ir3V9lChoBmgJaA9DCFFqL6Lt0DHAlIaUUpRoFUuZaBZHQIWrdQAMlTp1fZQoaAZoCWgPQwhAvRk1X7tkQJSGlFKUaBVN6ANoFkdAhg4A6EJ0GXV9lChoBmgJaA9DCJn1YiinyGBAlIaUUpRoFU3oA2gWR0CGE8KIi1RcdX2UKGgGaAloD0MIO3MPCd/CWkCUhpRSlGgVTegDaBZHQIYeiw2VE/l1fZQoaAZoCWgPQwiSdw5lqG1ZQJSGlFKUaBVN6ANoFkdAhiC7B42S+3V9lChoBmgJaA9DCJKumXyz51pAlIaUUpRoFU3oA2gWR0CGKoc2BJ7LdX2UKGgGaAloD0MI1VqYhXYHWkCUhpRSlGgVTegDaBZHQIYuM+otL+R1fZQoaAZoCWgPQwgGhUGZRgskQJSGlFKUaBVN6ANoFkdAhjFVhsqJ/HV9lChoBmgJaA9DCF0WE5uPSlxAlIaUUpRoFU3oA2gWR0CGMcTJyQxOdX2UKGgGaAloD0MISWk2j8OnYECUhpRSlGgVTegDaBZHQIY7kTxoZht1fZQoaAZoCWgPQwhcjexKy1g9QJSGlFKUaBVN6ANoFkdAhkcxbbDdg3V9lChoBmgJaA9DCKH2WztRx2xAlIaUUpRoFU1JAmgWR0CGSGhePaL5dX2UKGgGaAloD0MILQlQU8utY0CUhpRSlGgVTegDaBZHQIZOKkhzNll1fZQoaAZoCWgPQwhU/N8RFQZCwJSGlFKUaBVNhAFoFkdAhk6zcynDSHV9lChoBmgJaA9DCOQUHcnl/UhAlIaUUpRoFU3oA2gWR0CGUT6X0Gu+dX2UKGgGaAloD0MI9UnusImANkCUhpRSlGgVS+9oFkdAhlJGza9K3HV9lChoBmgJaA9DCGNi83FtNFVAlIaUUpRoFU3oA2gWR0CGW7LQHAymdX2UKGgGaAloD0MILSRgdHnLNUCUhpRSlGgVS6BoFkdAhmI+xW1c+3V9lChoBmgJaA9DCA3C3O7lBiJAlIaUUpRoFUvOaBZHQIZpTU3GXHB1fZQoaAZoCWgPQwgCRwINNtUQQJSGlFKUaBVL12gWR0CGbXvbXYlIdX2UKGgGaAloD0MI9u/6zFnZXkCUhpRSlGgVTegDaBZHQIZuBxYJVsF1fZQoaAZoCWgPQwjwpIXLKr9VQJSGlFKUaBVN6ANoFkdAhm99weeWfXV9lChoBmgJaA9DCNm1vd0SaWVAlIaUUpRoFU3oA2gWR0CG3vWtEG7jdX2UKGgGaAloD0MIk6rtJvjbYECUhpRSlGgVTegDaBZHQIbugHkcS5B1fZQoaAZoCWgPQwih1jTvuMNiQJSGlFKUaBVN6ANoFkdAhvC+1KGtZHV9lChoBmgJaA9DCCRDjq3ndGFAlIaUUpRoFU3oA2gWR0CG+nBj4HopdX2UKGgGaAloD0MI9Ix9ycbTXkCUhpRSlGgVTegDaBZHQIb+FanrIHV1fZQoaAZoCWgPQwiR1hh0Qi1jQJSGlFKUaBVN6ANoFkdAhwG/2saKk3V9lChoBmgJaA9DCAtioGvfdGVAlIaUUpRoFU3oA2gWR0CHDHN1QqI8dX2UKGgGaAloD0MIcmpnmNpKUkCUhpRSlGgVTegDaBZHQIcZPlyR0U51fZQoaAZoCWgPQwg3x7lNOLVgQJSGlFKUaBVN6ANoFkdAhxpxhc7henV9lChoBmgJaA9DCCNnYU87TDZAlIaUUpRoFUvvaBZHQIcevl0YCQt1fZQoaAZoCWgPQwgxXB0AcR5hQJSGlFKUaBVN6ANoFkdAhyTmfXf643V9lChoBmgJaA9DCE6zQLtDVjVAlIaUUpRoFU3oA2gWR0CHL0UnG828dX2UKGgGaAloD0MIrb1PVaElXkCUhpRSlGgVTegDaBZHQIc2nRLK3d91fZQoaAZoCWgPQwhq2sU008liQJSGlFKUaBVN6ANoFkdAhz3QWFev6nV9lChoBmgJaA9DCNZVgVqM6GBAlIaUUpRoFU3oA2gWR0CHQhYPGyX2dX2UKGgGaAloD0MIje21oPe5WUCUhpRSlGgVTegDaBZHQIdCnbTMJQd1fZQoaAZoCWgPQwgE6Pf9G/RiQJSGlFKUaBVN6ANoFkdAh0QgSvkilnV9lChoBmgJaA9DCLd6TnrfSDfAlIaUUpRoFUu3aBZHQIdZ1apxWDJ1fZQoaAZoCWgPQwhW8rG7QPNdQJSGlFKUaBVN6ANoFkdAh7QWBreqJnV9lChoBmgJaA9DCHKndLD+EF1AlIaUUpRoFU3oA2gWR0CHwxaX8fmtdX2UKGgGaAloD0MIEQAce/Y+XkCUhpRSlGgVTegDaBZHQIfFQeo1k2B1fZQoaAZoCWgPQwi/ZOPBllJmQJSGlFKUaBVN6ANoFkdAh9HUz0pVj3V9lChoBmgJaA9DCNdQai+iSGFAlIaUUpRoFU3oA2gWR0CH1XVCojwAdX2UKGgGaAloD0MIo3a/CvDFVECUhpRSlGgVTegDaBZHQIff2VNYbKl1fZQoaAZoCWgPQwhPPdLgtjo2wJSGlFKUaBVLoWgWR0CH6euEmICVdX2UKGgGaAloD0MIkUjb+BMfUkCUhpRSlGgVTegDaBZHQIfsXJLdvbZ1fZQoaAZoCWgPQwgdd0oHa3ZjQJSGlFKUaBVN6ANoFkdAh+2VawD/2nV9lChoBmgJaA9DCCofgqrR0VVAlIaUUpRoFU3oA2gWR0CH8hMKTjebdX2UKGgGaAloD0MI+FEN+73bYUCUhpRSlGgVTdYDaBZHQIf12ahHskZ1fZQoaAZoCWgPQwhx58JIL+9RQJSGlFKUaBVN6ANoFkdAiANaSDAaenV9lChoBmgJaA9DCKipZWt96GBAlIaUUpRoFU3oA2gWR0CICxeNT987dX2UKGgGaAloD0MI290DdF+qQECUhpRSlGgVS9ZoFkdAiAy4ZuQ6qHV9lChoBmgJaA9DCEkqU8zBTmFAlIaUUpRoFU3oA2gWR0CIEkNbTtsvdX2UKGgGaAloD0MIdQMF3snRY0CUhpRSlGgVTegDaBZHQIgW2W6bvw51fZQoaAZoCWgPQwig+Zy7XSteQJSGlFKUaBVN6ANoFkdAiBhItUXHinV9lChoBmgJaA9DCAlSKXY0KENAlIaUUpRoFUvzaBZHQIguIuZkTYd1fZQoaAZoCWgPQwjhe3+D9ltgQJSGlFKUaBVN6ANoFkdAiC9hScbzb3V9lChoBmgJaA9DCFMI5BJHXg3AlIaUUpRoFUucaBZHQIiIACU5dW11fZQoaAZoCWgPQwj1LAjlfZxMQJSGlFKUaBVN6ANoFkdAiIkSeqaPS3V9lChoBmgJaA9DCDSBIhYxmmJAlIaUUpRoFU3oA2gWR0CIl4NoakyldX2UKGgGaAloD0MIg9pv7UQgXECUhpRSlGgVTegDaBZHQIiZph8Yyft1fZQoaAZoCWgPQwhnDkktlBw0wJSGlFKUaBVLxmgWR0CIpuCEpRXPdX2UKGgGaAloD0MIvYqMDkgyZECUhpRSlGgVTegDaBZHQIiqPxjJ+2F1fZQoaAZoCWgPQwj4bB0c7J9VQJSGlFKUaBVN6ANoFkdAiLT84gieNHV9lChoBmgJaA9DCOVGkbWGfj/AlIaUUpRoFUvcaBZHQIi7j1CgK4R1fZQoaAZoCWgPQwgSFaqbC01hQJSGlFKUaBVN6ANoFkdAiL8tUfgaWHV9lChoBmgJaA9DCLgFS3UBOGJAlIaUUpRoFU3oA2gWR0CIwUvIOpbVdX2UKGgGaAloD0MIEwoRcIgIYECUhpRSlGgVTegDaBZHQIjGomTkhid1fZQoaAZoCWgPQwgyIeaSqvUjQJSGlFKUaBVL4GgWR0CIyBl1bJOndX2UKGgGaAloD0MI5/1/nDDaYkCUhpRSlGgVTegDaBZHQIjKFvZRKpV1fZQoaAZoCWgPQwjakeo7v6gcwJSGlFKUaBVLq2gWR0CIzWCCBf8edX2UKGgGaAloD0MI1PAtrBvcYUCUhpRSlGgVTegDaBZHQIjWzPQfIS11fZQoaAZoCWgPQwj/QLltX1ZoQJSGlFKUaBVN6ANoFkdAiN2qn3ta6nV9lChoBmgJaA9DCCbhQh7BuV5AlIaUUpRoFU3oA2gWR0CI5F3wkPc0dX2UKGgGaAloD0MIA+li00qnQUCUhpRSlGgVTegDaBZHQIjo1TFVDKJ1fZQoaAZoCWgPQwhNhXgkXuJaQJSGlFKUaBVN6ANoFkdAiOpQ2ETQFHV9lChoBmgJaA9DCO6yX3e6s/G/lIaUUpRoFUvGaBZHQIj/7Bhx5s11fZQoaAZoCWgPQwgcmNwosiBeQJSGlFKUaBVN6ANoFkdAiQDZuZThpHV9lChoBmgJaA9DCKD7cma78FnAlIaUUpRoFU0TAWgWR0CJA9NGEwnIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
dark-lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7271e4c80c513f459878e7b296b3df30bc86e9411c48c94dbbf1e89c160ce55
|
3 |
+
size 144024
|
dark-lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
dark-lander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc7465a9680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc7465a9710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc7465a97a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc7465a9830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc7465a98c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc7465a9950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc7465a99e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc7465a9a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc7465a9b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc7465a9b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc7465a9c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc7465ff180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651857345.4937458,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG2U/D7TPCO+WxqcOtchu7xjbn86niSjvQAAgD8AAIA/7YKovuDtij62lPg8RwCBvkrDLr2aujA9AAAAAAAAAADedgy/u2RAvkIPFbvQAo24IqwbPko5/zgAAIA/AACAP+YFlr3DFRe6m7iKO+JZIDhARIA72h/WtwAAgD8AAIA/QI6JPY/aNbq+sqA7JKGMOIrHmzsSxre4AACAPwAAgD/AlB6+qdsMvLaIxbsKb/+5O2NePbsg1DoAAIA/AACAPwCxtj2kkDK5HjOHOY9pgbY04TG7ei2huAAAgD8AAIA/k98cvjx5Mj5Ogxg8lXeNvntXpD1WZlW+AAAAAAAAAAAQkqo+td4aPp40Dz5DBmm+0uM+vps9hL0AAAAAAAAAANqPRz4fIOc87sTGOMl7rjeS34A+/N0duAAAgD8AAIA/zfM6vUhB1zm2UaY6VZi4NT2ko7uVRci5AACAPwAAgD/NkzM9j9Zsuo0/BroZxm61OeW2Oc3VGTkAAIA/AACAP/pYTD4Klls8M39POxQYeDnKzOI9i3F8ugAAgD8AAIA/QM8vvttUr7yf+Z29GmhNvBBfHD4K7CA9AACAPwAAgD9zmKk+B2UdvbbdlrsTnCs6qGhMvuJT4DoAAAAAAACAP5qVr7spTH+63sj4OyRVmjegDgu7W7dWNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeVc9YB5oZ0CUhpRSlIwBbJRN6AOMAXSUR0CEvvubZvkzdX2UKGgGaAloD0MI/wWCAJmWYECUhpRSlGgVTegDaBZHQIUweSW7e2x1fZQoaAZoCWgPQwiKr3YUZ0RgQJSGlFKUaBVN6ANoFkdAhTYe10DEFXV9lChoBmgJaA9DCKYO8nowmllAlIaUUpRoFU3oA2gWR0CFO590A93bdX2UKGgGaAloD0MIEYyDS8dNWkCUhpRSlGgVTegDaBZHQIVF5w84gih1fZQoaAZoCWgPQwiu00hL5W9ZQJSGlFKUaBVN6ANoFkdAhUf2G7Bfr3V9lChoBmgJaA9DCDy+vWvQl9Q/lIaUUpRoFUuuaBZHQIVN9mvnr6d1fZQoaAZoCWgPQwgukKD4MXdfQJSGlFKUaBVN6ANoFkdAhVFC3G4qgHV9lChoBmgJaA9DCCBDxw4qR0hAlIaUUpRoFU3oA2gWR0CFVLrcCYCydX2UKGgGaAloD0MIyZHOwMgqXECUhpRSlGgVTegDaBZHQIVXrb5/LDB1fZQoaAZoCWgPQwicxCCwcvBcQJSGlFKUaBVN6ANoFkdAhVgRPoFFD3V9lChoBmgJaA9DCBeDh2nfKFxAlIaUUpRoFU3oA2gWR0CFYS7MgU1ydX2UKGgGaAloD0MIFRqIZTPnEcCUhpRSlGgVS9xoFkdAhWwUONHYpXV9lChoBmgJaA9DCNRjWwYcx2VAlIaUUpRoFU3oA2gWR0CFc7xaPjn3dX2UKGgGaAloD0MI/RLx1vlHX0CUhpRSlGgVTegDaBZHQIV3WfVZs9B1fZQoaAZoCWgPQwjmIynpYZtiQJSGlFKUaBVN6ANoFkdAhYNbdznzQXV9lChoBmgJaA9DCFneVQ+YYWJAlIaUUpRoFU3oA2gWR0CFlJ/SYw7DdX2UKGgGaAloD0MIJET5gpYDYECUhpRSlGgVTegDaBZHQIWYid4FA3V1fZQoaAZoCWgPQwjRItv5fpZgQJSGlFKUaBVN6ANoFkdAhZoyt/4Ir3V9lChoBmgJaA9DCFFqL6Lt0DHAlIaUUpRoFUuZaBZHQIWrdQAMlTp1fZQoaAZoCWgPQwhAvRk1X7tkQJSGlFKUaBVN6ANoFkdAhg4A6EJ0GXV9lChoBmgJaA9DCJn1YiinyGBAlIaUUpRoFU3oA2gWR0CGE8KIi1RcdX2UKGgGaAloD0MIO3MPCd/CWkCUhpRSlGgVTegDaBZHQIYeiw2VE/l1fZQoaAZoCWgPQwiSdw5lqG1ZQJSGlFKUaBVN6ANoFkdAhiC7B42S+3V9lChoBmgJaA9DCJKumXyz51pAlIaUUpRoFU3oA2gWR0CGKoc2BJ7LdX2UKGgGaAloD0MI1VqYhXYHWkCUhpRSlGgVTegDaBZHQIYuM+otL+R1fZQoaAZoCWgPQwgGhUGZRgskQJSGlFKUaBVN6ANoFkdAhjFVhsqJ/HV9lChoBmgJaA9DCF0WE5uPSlxAlIaUUpRoFU3oA2gWR0CGMcTJyQxOdX2UKGgGaAloD0MISWk2j8OnYECUhpRSlGgVTegDaBZHQIY7kTxoZht1fZQoaAZoCWgPQwhcjexKy1g9QJSGlFKUaBVN6ANoFkdAhkcxbbDdg3V9lChoBmgJaA9DCKH2WztRx2xAlIaUUpRoFU1JAmgWR0CGSGhePaL5dX2UKGgGaAloD0MILQlQU8utY0CUhpRSlGgVTegDaBZHQIZOKkhzNll1fZQoaAZoCWgPQwhU/N8RFQZCwJSGlFKUaBVNhAFoFkdAhk6zcynDSHV9lChoBmgJaA9DCOQUHcnl/UhAlIaUUpRoFU3oA2gWR0CGUT6X0Gu+dX2UKGgGaAloD0MI9UnusImANkCUhpRSlGgVS+9oFkdAhlJGza9K3HV9lChoBmgJaA9DCGNi83FtNFVAlIaUUpRoFU3oA2gWR0CGW7LQHAymdX2UKGgGaAloD0MILSRgdHnLNUCUhpRSlGgVS6BoFkdAhmI+xW1c+3V9lChoBmgJaA9DCA3C3O7lBiJAlIaUUpRoFUvOaBZHQIZpTU3GXHB1fZQoaAZoCWgPQwgCRwINNtUQQJSGlFKUaBVL12gWR0CGbXvbXYlIdX2UKGgGaAloD0MI9u/6zFnZXkCUhpRSlGgVTegDaBZHQIZuBxYJVsF1fZQoaAZoCWgPQwjwpIXLKr9VQJSGlFKUaBVN6ANoFkdAhm99weeWfXV9lChoBmgJaA9DCNm1vd0SaWVAlIaUUpRoFU3oA2gWR0CG3vWtEG7jdX2UKGgGaAloD0MIk6rtJvjbYECUhpRSlGgVTegDaBZHQIbugHkcS5B1fZQoaAZoCWgPQwih1jTvuMNiQJSGlFKUaBVN6ANoFkdAhvC+1KGtZHV9lChoBmgJaA9DCCRDjq3ndGFAlIaUUpRoFU3oA2gWR0CG+nBj4HopdX2UKGgGaAloD0MI9Ix9ycbTXkCUhpRSlGgVTegDaBZHQIb+FanrIHV1fZQoaAZoCWgPQwiR1hh0Qi1jQJSGlFKUaBVN6ANoFkdAhwG/2saKk3V9lChoBmgJaA9DCAtioGvfdGVAlIaUUpRoFU3oA2gWR0CHDHN1QqI8dX2UKGgGaAloD0MIcmpnmNpKUkCUhpRSlGgVTegDaBZHQIcZPlyR0U51fZQoaAZoCWgPQwg3x7lNOLVgQJSGlFKUaBVN6ANoFkdAhxpxhc7henV9lChoBmgJaA9DCCNnYU87TDZAlIaUUpRoFUvvaBZHQIcevl0YCQt1fZQoaAZoCWgPQwgxXB0AcR5hQJSGlFKUaBVN6ANoFkdAhyTmfXf643V9lChoBmgJaA9DCE6zQLtDVjVAlIaUUpRoFU3oA2gWR0CHL0UnG828dX2UKGgGaAloD0MIrb1PVaElXkCUhpRSlGgVTegDaBZHQIc2nRLK3d91fZQoaAZoCWgPQwhq2sU008liQJSGlFKUaBVN6ANoFkdAhz3QWFev6nV9lChoBmgJaA9DCNZVgVqM6GBAlIaUUpRoFU3oA2gWR0CHQhYPGyX2dX2UKGgGaAloD0MIje21oPe5WUCUhpRSlGgVTegDaBZHQIdCnbTMJQd1fZQoaAZoCWgPQwgE6Pf9G/RiQJSGlFKUaBVN6ANoFkdAh0QgSvkilnV9lChoBmgJaA9DCLd6TnrfSDfAlIaUUpRoFUu3aBZHQIdZ1apxWDJ1fZQoaAZoCWgPQwhW8rG7QPNdQJSGlFKUaBVN6ANoFkdAh7QWBreqJnV9lChoBmgJaA9DCHKndLD+EF1AlIaUUpRoFU3oA2gWR0CHwxaX8fmtdX2UKGgGaAloD0MIEQAce/Y+XkCUhpRSlGgVTegDaBZHQIfFQeo1k2B1fZQoaAZoCWgPQwi/ZOPBllJmQJSGlFKUaBVN6ANoFkdAh9HUz0pVj3V9lChoBmgJaA9DCNdQai+iSGFAlIaUUpRoFU3oA2gWR0CH1XVCojwAdX2UKGgGaAloD0MIo3a/CvDFVECUhpRSlGgVTegDaBZHQIff2VNYbKl1fZQoaAZoCWgPQwhPPdLgtjo2wJSGlFKUaBVLoWgWR0CH6euEmICVdX2UKGgGaAloD0MIkUjb+BMfUkCUhpRSlGgVTegDaBZHQIfsXJLdvbZ1fZQoaAZoCWgPQwgdd0oHa3ZjQJSGlFKUaBVN6ANoFkdAh+2VawD/2nV9lChoBmgJaA9DCCofgqrR0VVAlIaUUpRoFU3oA2gWR0CH8hMKTjebdX2UKGgGaAloD0MI+FEN+73bYUCUhpRSlGgVTdYDaBZHQIf12ahHskZ1fZQoaAZoCWgPQwhx58JIL+9RQJSGlFKUaBVN6ANoFkdAiANaSDAaenV9lChoBmgJaA9DCKipZWt96GBAlIaUUpRoFU3oA2gWR0CICxeNT987dX2UKGgGaAloD0MI290DdF+qQECUhpRSlGgVS9ZoFkdAiAy4ZuQ6qHV9lChoBmgJaA9DCEkqU8zBTmFAlIaUUpRoFU3oA2gWR0CIEkNbTtsvdX2UKGgGaAloD0MIdQMF3snRY0CUhpRSlGgVTegDaBZHQIgW2W6bvw51fZQoaAZoCWgPQwig+Zy7XSteQJSGlFKUaBVN6ANoFkdAiBhItUXHinV9lChoBmgJaA9DCAlSKXY0KENAlIaUUpRoFUvzaBZHQIguIuZkTYd1fZQoaAZoCWgPQwjhe3+D9ltgQJSGlFKUaBVN6ANoFkdAiC9hScbzb3V9lChoBmgJaA9DCFMI5BJHXg3AlIaUUpRoFUucaBZHQIiIACU5dW11fZQoaAZoCWgPQwj1LAjlfZxMQJSGlFKUaBVN6ANoFkdAiIkSeqaPS3V9lChoBmgJaA9DCDSBIhYxmmJAlIaUUpRoFU3oA2gWR0CIl4NoakyldX2UKGgGaAloD0MIg9pv7UQgXECUhpRSlGgVTegDaBZHQIiZph8Yyft1fZQoaAZoCWgPQwhnDkktlBw0wJSGlFKUaBVLxmgWR0CIpuCEpRXPdX2UKGgGaAloD0MIvYqMDkgyZECUhpRSlGgVTegDaBZHQIiqPxjJ+2F1fZQoaAZoCWgPQwj4bB0c7J9VQJSGlFKUaBVN6ANoFkdAiLT84gieNHV9lChoBmgJaA9DCOVGkbWGfj/AlIaUUpRoFUvcaBZHQIi7j1CgK4R1fZQoaAZoCWgPQwgSFaqbC01hQJSGlFKUaBVN6ANoFkdAiL8tUfgaWHV9lChoBmgJaA9DCLgFS3UBOGJAlIaUUpRoFU3oA2gWR0CIwUvIOpbVdX2UKGgGaAloD0MIEwoRcIgIYECUhpRSlGgVTegDaBZHQIjGomTkhid1fZQoaAZoCWgPQwgyIeaSqvUjQJSGlFKUaBVL4GgWR0CIyBl1bJOndX2UKGgGaAloD0MI5/1/nDDaYkCUhpRSlGgVTegDaBZHQIjKFvZRKpV1fZQoaAZoCWgPQwjakeo7v6gcwJSGlFKUaBVLq2gWR0CIzWCCBf8edX2UKGgGaAloD0MI1PAtrBvcYUCUhpRSlGgVTegDaBZHQIjWzPQfIS11fZQoaAZoCWgPQwj/QLltX1ZoQJSGlFKUaBVN6ANoFkdAiN2qn3ta6nV9lChoBmgJaA9DCCbhQh7BuV5AlIaUUpRoFU3oA2gWR0CI5F3wkPc0dX2UKGgGaAloD0MIA+li00qnQUCUhpRSlGgVTegDaBZHQIjo1TFVDKJ1fZQoaAZoCWgPQwhNhXgkXuJaQJSGlFKUaBVN6ANoFkdAiOpQ2ETQFHV9lChoBmgJaA9DCO6yX3e6s/G/lIaUUpRoFUvGaBZHQIj/7Bhx5s11fZQoaAZoCWgPQwgcmNwosiBeQJSGlFKUaBVN6ANoFkdAiQDZuZThpHV9lChoBmgJaA9DCKD7cma78FnAlIaUUpRoFU0TAWgWR0CJA9NGEwnIdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
dark-lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba4bacefec1a112b4a65eb340915986fe665a419c62614b3e8b5168616569bb5
|
3 |
+
size 84829
|
dark-lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41f019234b6534fd2b93af34b97ee0c167731945130b20255b83d932c24953ce
|
3 |
+
size 43201
|
dark-lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dark-lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b0ec7be94fd20c41680a659f09eb6d327ddf2437205ada6e3ac558ab8a36e32
|
3 |
+
size 236962
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 209.17594546315317, "std_reward": 39.0902158582097, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T17:30:07.706936"}
|