--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - domain-asr - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: Whisper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: immunology dataset type: audiofolder config: default split: test args: 'config: en, split: test' metrics: - name: Wer type: wer value: 9.337797619047619 --- # Whisper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the immunology dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3058 - Wer: 9.3378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0259 | 4.55 | 1000 | 0.2254 | 9.5610 | | 0.0135 | 9.09 | 2000 | 0.2853 | 9.375 | | 0.0022 | 13.64 | 3000 | 0.2989 | 9.375 | | 0.0004 | 18.18 | 4000 | 0.3058 | 9.3378 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2