shhossain's picture
Upload config
0f7cc62 verified
raw
history blame
1.08 kB
from transformers import PreTrainedModel
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig
mp = {0:'sad',1:'joy',2:'love',3:'anger',4:'fear',5:'surprise'}
class SentimentConfig(PretrainedConfig):
model_type = "SententenceTransformerSentimentClassifier"
def __init__(self, embedding_model: str="sentence-transformers/all-MiniLM-L6-v2", class_map: dict=mp, h1: int=44, h2: int=46, **kwargs):
self.embedding_model = embedding_model
self.class_map = class_map
self.h1 = h1
self.h2 = h2
super().__init__(**kwargs)
class SententenceTransformerSentimentModel(PreTrainedModel):
config_class = SentimentConfig
def __init__(self, config):
super().__init__(config)
self.fc1 = nn.Linear(384, config.h1)
self.fc2 = nn.Linear(config.h1, config.h2)
self.out = nn.Linear(config.h2, 6)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.out(x)
out = F.softmax(x, dim=-1)
return out