shibing624 commited on
Commit
90c27a7
1 Parent(s): 3cfe78a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -65,10 +65,10 @@ from seqeval.metrics.sequence_labeling import get_entities
65
  os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
66
 
67
  # Load model from HuggingFace Hub
68
- tokenizer = AutoTokenizer.from_pretrained("shibing624/bert4ner-base-uncased")
69
- model = AutoModelForTokenClassification.from_pretrained("shibing624/bert4ner-base-uncased")
70
  label_list = ["E-ORG", "E-LOC", "S-MISC", "I-MISC", "S-PER", "E-PER", "B-MISC", "O", "S-LOC",
71
- "E-MISC", "B-ORG", "S-ORG", "I-ORG", "B-LOC", "I-LOC", "B-PER", "I-PER"]
72
 
73
  sentence = "AL-AIN, United Arab Emirates 1996-12-06"
74
 
@@ -79,15 +79,15 @@ def get_entity(sentence):
79
  with torch.no_grad():
80
  outputs = model(inputs).logits
81
  predictions = torch.argmax(outputs, dim=2)
82
- char_tags = [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy())][1:-1]
83
  print(sentence)
84
- print(char_tags)
85
 
86
- pred_labels = [i[1] for i in char_tags]
87
  entities = []
88
  line_entities = get_entities(pred_labels)
89
  for i in line_entities:
90
- word = sentence[i[1]: i[2] + 1]
91
  entity_type = i[0]
92
  entities.append((word, entity_type))
93
 
 
65
  os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
66
 
67
  # Load model from HuggingFace Hub
68
+ tokenizer = AutoTokenizer.from_pretrained("../bert4ner-base-uncased")
69
+ model = AutoModelForTokenClassification.from_pretrained("../bert4ner-base-uncased")
70
  label_list = ["E-ORG", "E-LOC", "S-MISC", "I-MISC", "S-PER", "E-PER", "B-MISC", "O", "S-LOC",
71
+ "E-MISC", "B-ORG", "S-ORG", "I-ORG", "B-LOC", "I-LOC", "B-PER", "I-PER"]
72
 
73
  sentence = "AL-AIN, United Arab Emirates 1996-12-06"
74
 
 
79
  with torch.no_grad():
80
  outputs = model(inputs).logits
81
  predictions = torch.argmax(outputs, dim=2)
82
+ word_tags = [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy()[1:-1])]
83
  print(sentence)
84
+ print(word_tags)
85
 
86
+ pred_labels = [i[1] for i in word_tags]
87
  entities = []
88
  line_entities = get_entities(pred_labels)
89
  for i in line_entities:
90
+ word = tokens[i[1]: i[2] + 1]
91
  entity_type = i[0]
92
  entities.append((word, entity_type))
93