shibing624 commited on
Commit
183bb99
1 Parent(s): f42a51d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -137,7 +137,7 @@ In short:
137
  3. 🟡 shibing624/text2vec-base-chinese (ov-qint8), int8 quantization with OV incurs a small performance hit on some tasks, and a tiny performance gain on others, when quantizing with [Chinese STSB](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt). Additionally, it results in a [4.78x speedup](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#benchmarks) on CPU.
138
 
139
  - usage: shibing624/text2vec-base-chinese (onnx-O4), for gpu
140
- ```
141
  from sentence_transformers import SentenceTransformer
142
 
143
  model = SentenceTransformer(
@@ -145,16 +145,17 @@ model = SentenceTransformer(
145
  backend="onnx",
146
  model_kwargs={"file_name": "model_O4.onnx"},
147
  )
148
- embeddings = model.encode(["怎么开通银行卡", "如何更换花呗绑定银行卡", "花呗更改绑定银行卡"])
149
  print(embeddings.shape)
150
-
151
  similarities = model.similarity(embeddings, embeddings)
152
  print(similarities)
153
  ```
154
 
155
 
156
  - usage: shibing624/text2vec-base-chinese (ov), for cpu
157
- ```
 
 
158
  from sentence_transformers import SentenceTransformer
159
 
160
  model = SentenceTransformer(
@@ -162,15 +163,15 @@ model = SentenceTransformer(
162
  backend="openvino",
163
  )
164
 
165
- embeddings = model.encode(["怎么开通银行卡", "如何更换花呗绑定银行卡", "花呗更改绑定银行卡"])
166
  print(embeddings.shape)
167
-
168
  similarities = model.similarity(embeddings, embeddings)
169
  print(similarities)
170
  ```
171
 
172
  - usage: shibing624/text2vec-base-chinese (ov-qint8), for cpu
173
- ```
 
174
  from sentence_transformers import SentenceTransformer
175
 
176
  model = SentenceTransformer(
@@ -178,9 +179,8 @@ model = SentenceTransformer(
178
  backend="onnx",
179
  model_kwargs={"file_name": "model_qint8_avx512_vnni.onnx"},
180
  )
181
- embeddings = model.encode(["怎么开通银行卡", "如何更换花呗绑定银行卡", "花呗更改绑定银行卡"])
182
  print(embeddings.shape)
183
-
184
  similarities = model.similarity(embeddings, embeddings)
185
  print(similarities)
186
  ```
 
137
  3. 🟡 shibing624/text2vec-base-chinese (ov-qint8), int8 quantization with OV incurs a small performance hit on some tasks, and a tiny performance gain on others, when quantizing with [Chinese STSB](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt). Additionally, it results in a [4.78x speedup](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#benchmarks) on CPU.
138
 
139
  - usage: shibing624/text2vec-base-chinese (onnx-O4), for gpu
140
+ ```python
141
  from sentence_transformers import SentenceTransformer
142
 
143
  model = SentenceTransformer(
 
145
  backend="onnx",
146
  model_kwargs={"file_name": "model_O4.onnx"},
147
  )
148
+ embeddings = model.encode(["如何更换花呗绑定银行卡", "花呗更改绑定银行卡", "你是谁"])
149
  print(embeddings.shape)
 
150
  similarities = model.similarity(embeddings, embeddings)
151
  print(similarities)
152
  ```
153
 
154
 
155
  - usage: shibing624/text2vec-base-chinese (ov), for cpu
156
+ ```python
157
+ # pip install 'optimum[openvino]'
158
+
159
  from sentence_transformers import SentenceTransformer
160
 
161
  model = SentenceTransformer(
 
163
  backend="openvino",
164
  )
165
 
166
+ embeddings = model.encode(["如何更换花呗绑定银行卡", "花呗更改绑定银行卡", "你是谁"])
167
  print(embeddings.shape)
 
168
  similarities = model.similarity(embeddings, embeddings)
169
  print(similarities)
170
  ```
171
 
172
  - usage: shibing624/text2vec-base-chinese (ov-qint8), for cpu
173
+ ```python
174
+ # pip install optimum
175
  from sentence_transformers import SentenceTransformer
176
 
177
  model = SentenceTransformer(
 
179
  backend="onnx",
180
  model_kwargs={"file_name": "model_qint8_avx512_vnni.onnx"},
181
  )
182
+ embeddings = model.encode(["如何更换花呗绑定银行卡", "花呗更改绑定银行卡", "你是谁"])
183
  print(embeddings.shape)
 
184
  similarities = model.similarity(embeddings, embeddings)
185
  print(similarities)
186
  ```