shibing624 commited on
Commit
59577b3
1 Parent(s): 01c2dee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -4
README.md CHANGED
@@ -7,8 +7,24 @@ tags:
7
  - sentence-similarity
8
  - transformers
9
  ---
10
- # shibing624/text2vec
11
- This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  ## Usage (text2vec)
14
  Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
@@ -86,8 +102,6 @@ print("Sentence embeddings:")
86
  print(sentence_embeddings)
87
  ```
88
 
89
- ## Evaluation Results
90
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
91
 
92
  ## Full Model Architecture
93
  ```
 
7
  - sentence-similarity
8
  - transformers
9
  ---
10
+ # shibing624/text2vec-base-chinese
11
+ This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese.
12
+
13
+ It maps sentences to a 768 dimensional dense vector space and can be used for tasks
14
+ like sentence embeddings, text matching or semantic search.
15
+
16
+
17
+ ## Evaluation
18
+ For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
19
+
20
+ - chinese text matching task:
21
+
22
+ | Arch | Backbone | Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
23
+ | :-- | :--- | :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
24
+ | Word2Vec | word2vec | w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 |
25
+ | SBERT | xlm-roberta-base | paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 |
26
+ | CoSENT | hfl/chinese-macbert-base | text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 |
27
+
28
 
29
  ## Usage (text2vec)
30
  Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
 
102
  print(sentence_embeddings)
103
  ```
104
 
 
 
105
 
106
  ## Full Model Architecture
107
  ```