shibing624
commited on
Commit
•
59577b3
1
Parent(s):
01c2dee
Update README.md
Browse files
README.md
CHANGED
@@ -7,8 +7,24 @@ tags:
|
|
7 |
- sentence-similarity
|
8 |
- transformers
|
9 |
---
|
10 |
-
# shibing624/text2vec
|
11 |
-
This is a CoSENT(Cosine Sentence) model:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## Usage (text2vec)
|
14 |
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
@@ -86,8 +102,6 @@ print("Sentence embeddings:")
|
|
86 |
print(sentence_embeddings)
|
87 |
```
|
88 |
|
89 |
-
## Evaluation Results
|
90 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
91 |
|
92 |
## Full Model Architecture
|
93 |
```
|
|
|
7 |
- sentence-similarity
|
8 |
- transformers
|
9 |
---
|
10 |
+
# shibing624/text2vec-base-chinese
|
11 |
+
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese.
|
12 |
+
|
13 |
+
It maps sentences to a 768 dimensional dense vector space and can be used for tasks
|
14 |
+
like sentence embeddings, text matching or semantic search.
|
15 |
+
|
16 |
+
|
17 |
+
## Evaluation
|
18 |
+
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
19 |
+
|
20 |
+
- chinese text matching task:
|
21 |
+
|
22 |
+
| Arch | Backbone | Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
|
23 |
+
| :-- | :--- | :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
24 |
+
| Word2Vec | word2vec | w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 |
|
25 |
+
| SBERT | xlm-roberta-base | paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 |
|
26 |
+
| CoSENT | hfl/chinese-macbert-base | text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 |
|
27 |
+
|
28 |
|
29 |
## Usage (text2vec)
|
30 |
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
|
|
102 |
print(sentence_embeddings)
|
103 |
```
|
104 |
|
|
|
|
|
105 |
|
106 |
## Full Model Architecture
|
107 |
```
|