--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - text2vec - feature-extraction - sentence-similarity - transformers --- # shibing624/text2vec-base-chinese This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese. It maps sentences to a 768 dimensional dense vector space and can be used for tasks like sentence embeddings, text matching or semantic search. ## Evaluation For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec) - chinese text matching task: | Arch | Backbone | Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS | | :-- | :--- | :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | | Word2Vec | word2vec | w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 | | SBERT | xlm-roberta-base | paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 | | CoSENT | hfl/chinese-macbert-base | text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 | ## Usage (text2vec) Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed: ``` pip install -U text2vec ``` Then you can use the model like this: ```python from text2vec import SentenceModel sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] model = SentenceModel('shibing624/text2vec-base-chinese') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. Install transformers: ``` pip install transformers ``` Then load model and predict: ```python from transformers import BertTokenizer, BertModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Load model from HuggingFace Hub tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese') model = BertModel.from_pretrained('shibing624/text2vec-base-chinese') sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Usage (sentence-transformers) [sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences. Install sentence-transformers: ``` pip install -U sentence-transformers ``` Then load model and predict: ```python from sentence_transformers import SentenceTransformer m = SentenceTransformer("shibing624/text2vec-base-chinese") sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] sentence_embeddings = m.encode(sentences) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` CoSENT( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True}) ) ``` ## Citing & Authors This model was trained by [text2vec/cosent](https://github.com/shibing624/text2vec/tree/master/text2vec/cosent). If you find this model helpful, feel free to cite: ```bibtex @software{text2vec, author = {Xu Ming}, title = {text2vec: A Tool for Text to Vector}, year = {2022}, url = {https://github.com/shibing624/text2vec}, } ```