File size: 7,472 Bytes
0064154 8717ebd 0064154 9777a00 937e01a 533f412 d09c2a1 533f412 29d752f 0064154 8717ebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/lr-8e6
results: []
datasets:
- augmxnt/ultra-orca-boros-en-ja-v1
---
*Per the Llama 3 Community License Agreement, the official name of this model is "LLama 3 shisa-v1-llama3-8b"*
8e6 moved in as it is a slightly superior model, will do some cleanup and renaming soon...
I ran the tests for 2 runs just to try to lower variance. These are all using temp 0.2, min_p 0.1, freq penalty 0.5
| Model | AVG Score | ELYZA100 | JA MT-Bench | Rakuda | Tengu-Bench | JA Char % |
|-----------------------------|-----------|----------|-------------|--------|-------------|-----------|
| shisa-v1-llama3-8b.lr-2e4 | 3.97 | 4.60 | 4.54 | 3.33 | 3.42 | 92.42% |
| shisa-v1-llama3-8b.lr-5e5 | 5.73 | 6.28 | 6.45 | 5.37 | 4.81 | 90.93% |
| shisa-v1-llama3-8b.2e5 | 6.33 | 6.51 | 6.66 | 6.68 | 5.48 | 91.51% |
| shisa-v1-llama3-8b (8-e6) | 6.59 | 6.67 | 6.95 | 7.05 | 5.68 | 91.30% |
| shisa-v1-llama3-8b.5e6 | 6.42 | 6.33 | 6.76 | 7.15 | 5.45 | 91.56% |
| shisa-v1-llama3-8b.2e6 | 6.31 | 6.26 | 6.88 | 6.73 | 5.38 | 92.00% |
* The 2e-4 and 5e-5 are definitely overtrained and perform significantly worse.
* 2e-5 is on the edge since weightwacher shows the embed as slightly overtrained for 2e-5, but NEFTune version is not
* 8e-6 performs the best, and 5e-6 also performed slightly better than 2e-5
For a comparison of where it sits vs other models:
| Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
|----------------------------------------|---------|-----------------|----------|--------|-------------|
| gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 |
| gpt-4o-2024-05-13 | 8.72 | 8.88 | 8.69 | 9.15 | 8.16 |
| gemini-1.5-pro | 8.58 | 8.58 | 8.93 | 9.20 | 7.61 |
| claude-3-opus-20240229 | 8.55 | 8.64 | 8.58 | 8.75 | 8.23 |
| CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
| **shisa-ai/shisa-v1-llama3-70b** | **7.30**| **7.34** | **7.67** | **8.15** | **6.04** |
| gpt-3.5-turbo-0125 | 7.17 | 7.24 | 6.98 | 7.64 | 6.82 |
| **shisa-ai/shisa-v1-llama3-70b.2e5** | **7.17**| **7.16** | **7.45** | **7.98** | **6.09** |
| karakuri-ai/karakuri-lm-8x7b-chat-v0.1 | 7.00 | 7.18 | 6.30 | 7.98 | 6.55 |
| karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
| lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
| **shisa-ai/shisa-v1-llama3-8b** | **6.59**| **6.67** | **6.95** | **7.05**| **5.68** |
| **shisa-ai/shisa-swallowmx-13a47b-v1** | **6.17**| **6.48** | **6.07** | **7.11**| **5.03** |
| lightblue/suzume-llama-3-8B-japanese | 5.96 | 6.68 | 4.96 | 6.68 | 5.53 |
| augmxnt/shisa-gamma-7b-v1 | 5.82 | 5.96 | 5.02 | 6.85 | 5.47 |
| **shisa-ai/shisa-v1-phi3-14b** | **5.77**| **6.28** | **5.26** | **6.55**| **5.01** |
| **shisa-ai/shisa-v1-gemma-8b** | **5.64**| **6.50** | **5.42** | **5.10**| **5.55** |
| Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 |
| **shisa-ai/shisa-v1-mistral0.3-7b** | **5.11**| **5.64** | **6.10** | **3.83**|**4.86** |
| cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
| mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
| **shisa-ai/shisa-v1-yi1.5-9b** | **4.63**| **5.98** | **4.28** | **3.26**|**5.00** |
| augmxnt/shisa-7b-v1 | 4.50 | 4.63 | 3.95 | 4.89 | 4.53 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/lr-8e6
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-llama3-8b.lr-8e6
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.00
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# outputs/lr-8e6
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4983
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3951 | 0.0064 | 1 | 0.8645 |
| 0.8731 | 0.5020 | 79 | 0.5577 |
| 0.8405 | 1.0040 | 158 | 0.5138 |
| 0.6888 | 1.4853 | 237 | 0.4982 |
| 0.6674 | 1.9873 | 316 | 0.4870 |
| 0.5859 | 2.4694 | 395 | 0.4983 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |