--- license: apache-2.0 language: - ja - en datasets: - augmxnt/ultra-orca-boros-en-ja-v1 base_model: tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1 tags: - generated_from_trainer --- shisa-v2 Base Model ablation Using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benchmark framework](https://github.com/lightblue-tech/japanese_llm_eval): | Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench | |----------------------------------------|---------|-----------------|----------|--------|-------------| | gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 | | CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 | | karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 | | lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 | | shisa-ai/shisa-llama3-8b-v1^ | 6.29 | 6.62 | 6.41 | 7.05 | 5.07 | | **shisa-ai/shisa-swallowmx-13a47b-v1^**| **6.17**| **6.48** | **6.07** | **7.11**| **5.03** | | Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 | | shisa-ai/shisa-gemma-7b-v1 | 5.64 | 6.50 | 5.42 | 5.10 | 5.55 | | augmxnt/shisa-gamma-7b-v1 | 5.56 | 5.84 | 4.00 | 6.73 | 5.68 | | lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 | | cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 | | mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 | | shisa-ai/shisa-yi1.5-9b-v1 | 4.63 | 5.98 | 4.28 | 3.26 | 5.00 | ^ Sampler settings: temperature 0.2, min_p 0.1, frequency_penalty 0.5 [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false chat_template: inst datasets: - path: augmxnt/ultra-orca-boros-en-ja-v1 type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/basemodel-swallowmx-8x22b model_config: output_router_logits: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true use_wandb: true wandb_project: shisa-v2 wandb_entity: augmxnt wandb_name: shisa-swallowmx-13a47b-v1 global_batch_size: 1 gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 3 # https://github.com/huggingface/transformers/issues/22101 # https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py#L141 optimizer: paged_adamw_8bit lr_scheduler: linear learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 debug: deepspeed: axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# outputs/basemodel-swallowmx-8x22b This model is a fine-tuned version of [tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 119 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5705 | 0.0022 | 1 | 0.5065 | | 0.505 | 0.4993 | 229 | 0.3910 | | 0.5258 | 0.9986 | 458 | 0.3654 | | 0.2964 | 1.4835 | 687 | 0.3786 | | 0.2923 | 1.9828 | 916 | 0.3669 | | 0.1462 | 2.4682 | 1145 | 0.4429 | | 0.1156 | 2.9676 | 1374 | 0.4443 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1