--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-hindi-colab-CV16.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 0.19428906708390378 --- # w2v-bert-2.0-hindi-colab-CV16.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3986 - Wer: 0.1943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.1542 | 1.35 | 300 | 0.8095 | 0.5287 | | 0.3259 | 2.71 | 600 | 0.4394 | 0.3296 | | 0.182 | 4.06 | 900 | 0.3599 | 0.2411 | | 0.0988 | 5.42 | 1200 | 0.3444 | 0.2149 | | 0.0617 | 6.77 | 1500 | 0.3469 | 0.2018 | | 0.0312 | 8.13 | 1800 | 0.3702 | 0.1937 | | 0.0137 | 9.48 | 2100 | 0.3986 | 0.1943 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0