Text-to-Video
Diffusers
VideoToVideoSDPipeline
jayw commited on
Commit
f2ca054
1 Parent(s): 0cc0e36

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -1,3 +1,73 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ tags:
4
+ - text-to-video
5
  ---
6
+
7
+ # show-1-sr2
8
+
9
+ Pixel-based VDMs can generate motion accurately aligned with the textual prompt but typically demand expensive computational costs in terms of time and GPU memory, especially when generating high-resolution videos. Latent-based VDMs are more resource-efficient because they work in a reduced-dimension latent space. But it is challenging for such small latent space (e.g., 64×40 for 256×160 videos) to cover rich yet necessary visual semantic details as described by the textual prompt.
10
+
11
+ To marry the strength and alleviate the weakness of pixel-based and latent-based VDMs, we introduce **Show-1**, an efficient text-to-video model that generates videos of not only decent video-text alignment but also high visual quality.
12
+
13
+ ![](https://showlab.github.io/Show-1/assets/images/method.png)
14
+
15
+ ## Model Details
16
+
17
+ This is the super-resolution model of Show-1 that upscales videos from a 256x160 resolution to 576x320. The model is finetuned from [cerspense/zeroscope_v2_576w](https://huggingface.co/cerspense/zeroscope_v2_576w) on the [WebVid-10M](https://maxbain.com/webvid-dataset/) dataset.
18
+
19
+ - **Developed by:** [Show Lab, National University of Singapore](https://sites.google.com/view/showlab/home?authuser=0)
20
+ - **Model type:** pixel- and latent-based cascaded text-to-video diffusion model
21
+ - **Cascade stage:** super-resolution (256x160->576x320)
22
+ - **Finetuned from model:** [cerspense/zeroscope_v2_576w](https://huggingface.co/cerspense/zeroscope_v2_576w)
23
+ - **License:** Creative Commons Attribution Non Commercial 4.0
24
+ - **Resources for more information:** [GitHub](https://github.com/showlab/Show-1), [Website](https://showlab.github.io/Show-1/), [arXiv](https://arxiv.org/abs/2309.15818)
25
+
26
+ ## Usage
27
+
28
+ Clone the GitHub repository and install the requirements:
29
+
30
+ ```bash
31
+ git clone https://github.com/showlab/Show-1.git
32
+ pip install -r requirements.txt
33
+ ```
34
+
35
+ Run the following command to generate a video from a text prompt. By default, this will automatically download all the model weights from huggingface.
36
+
37
+ ```bash
38
+ python run_inference.py
39
+ ```
40
+
41
+ You can also download the weights manually and change the `pretrained_model_path` in `run_inference.py` to run the inference.
42
+
43
+ ```bash
44
+ git lfs install
45
+
46
+ # base
47
+ git clone https://huggingface.co/showlab/show-1-base
48
+ # interp
49
+ git clone https://huggingface.co/showlab/show-1-interpolation
50
+ # sr1
51
+ git clone https://huggingface.co/showlab/show-1-sr1
52
+ # sr2
53
+ git clone https://huggingface.co/showlab/show-1-sr2
54
+
55
+ ```
56
+
57
+ ## Citation
58
+
59
+ If you make use of our work, please cite our paper.
60
+ ```bibtex
61
+ @misc{zhang2023show1,
62
+ title={Show-1: Marrying Pixel and Latent Diffusion Models for Text-to-Video Generation},
63
+ author={David Junhao Zhang and Jay Zhangjie Wu and Jia-Wei Liu and Rui Zhao and Lingmin Ran and Yuchao Gu and Difei Gao and Mike Zheng Shou},
64
+ year={2023},
65
+ eprint={2309.15818},
66
+ archivePrefix={arXiv},
67
+ primaryClass={cs.CV}
68
+ }
69
+ ```
70
+
71
+ ## Model Card Contact
72
+
73
+ This model card is maintained by [David Junhao Zhang](https://junhaozhang98.github.io/) and [Jay Zhangjie Wu](https://jayzjwu.github.io/). For any questions, please feel free to contact us or open an issue in the repository.