shreyansh26
commited on
Commit
•
af24c8f
1
Parent(s):
e52542d
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- sentence-transformers/embedding-training-data
|
4 |
+
- flax-sentence-embeddings/stackexchange_xml
|
5 |
+
- snli
|
6 |
+
- eli5
|
7 |
+
- search_qa
|
8 |
+
- multi_nli
|
9 |
+
- wikihow
|
10 |
+
- natural_questions
|
11 |
+
- trivia_qa
|
12 |
+
- ms_marco
|
13 |
+
- gooaq
|
14 |
+
- yahoo_answers_topics
|
15 |
+
language:
|
16 |
+
- en
|
17 |
+
inference: false
|
18 |
+
pipeline_tag: sentence-similarity
|
19 |
+
task_categories:
|
20 |
+
- sentence-similarity
|
21 |
+
- feature-extraction
|
22 |
+
- text-retrieval
|
23 |
+
tags:
|
24 |
+
- information retrieval
|
25 |
+
- ir
|
26 |
+
- documents retrieval
|
27 |
+
- passage retrieval
|
28 |
+
- beir
|
29 |
+
- benchmark
|
30 |
+
- sts
|
31 |
+
- semantic search
|
32 |
+
- sentence-transformers
|
33 |
+
- feature-extraction
|
34 |
+
- sentence-similarity
|
35 |
+
- transformers
|
36 |
+
---
|
37 |
+
|
38 |
+
# bert-base-1024-biencoder-64M-pairs
|
39 |
+
|
40 |
+
A long context biencoder based on [MosaicML's BERT pretrained on 1024 sequence length](https://huggingface.co/mosaicml/mosaic-bert-base-seqlen-1024). This model maps sentences & paragraphs to a 768 dimensional dense vector space
|
41 |
+
and can be used for tasks like clustering or semantic search.
|
42 |
+
|
43 |
+
## Usage
|
44 |
+
|
45 |
+
### Download the model and related scripts
|
46 |
+
```git clone https://huggingface.co/shreyansh26/bert-base-1024-biencoder-64M-pairs```
|
47 |
+
|
48 |
+
### Inference
|
49 |
+
```python
|
50 |
+
import torch
|
51 |
+
from torch import nn
|
52 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, AutoModel
|
53 |
+
from mosaic_bert import BertModel
|
54 |
+
|
55 |
+
# pip install triton==2.0.0.dev20221202 --no-deps if using Pytorch 2.0
|
56 |
+
|
57 |
+
class AutoModelForSentenceEmbedding(nn.Module):
|
58 |
+
def __init__(self, model, tokenizer, normalize=True):
|
59 |
+
super(AutoModelForSentenceEmbedding, self).__init__()
|
60 |
+
|
61 |
+
self.model = model.to("cuda")
|
62 |
+
self.normalize = normalize
|
63 |
+
self.tokenizer = tokenizer
|
64 |
+
|
65 |
+
def forward(self, **kwargs):
|
66 |
+
model_output = self.model(**kwargs)
|
67 |
+
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
|
68 |
+
if self.normalize:
|
69 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
70 |
+
|
71 |
+
return embeddings
|
72 |
+
|
73 |
+
def mean_pooling(self, model_output, attention_mask):
|
74 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
75 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
76 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
77 |
+
|
78 |
+
model = AutoModel.from_pretrained("<path-to-model>", trust_remote_code=True).to("cuda")
|
79 |
+
model = AutoModelForSentenceEmbedding(model, tokenizer)
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
81 |
+
|
82 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
83 |
+
|
84 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=1024, return_tensors='pt').to("cuda")
|
85 |
+
embeddings = model(**encoded_input)
|
86 |
+
|
87 |
+
print(embeddings)
|
88 |
+
print(embeddings.shape)
|
89 |
+
```
|
90 |
+
|
91 |
+
## Other details
|
92 |
+
|
93 |
+
### Training
|
94 |
+
|
95 |
+
This model has been trained on 64M randomly sampled pairs of sentences/paragraphs from the same training set that Sentence Transformers models use. Details of the
|
96 |
+
training set [here](https://huggingface.co/sentence-transformers/all-mpnet-base-v2#training-data).
|
97 |
+
|
98 |
+
The training (along with hyperparameters), inference and data loading scripts can all be found in [this Github repository](https://github.com/shreyansh26/Long-Context-Biencoder).
|
99 |
+
|
100 |
+
### Evaluations
|
101 |
+
|
102 |
+
We ran the model on a few retrieval based benchmarks (CQADupstackEnglishRetrieval, DBPedia, MSMARCO, QuoraRetrieval) and the results are [here](https://github.com/shreyansh26/Long-Context-Biencoder/tree/master/models/results/64M_results).
|