--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large SSD superU results: [] --- # Whisper Large SSD superU This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2685 - Wer: 166.6349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 4.1121 | 3.125 | 100 | 3.5671 | 154.6120 | | 2.6613 | 6.25 | 200 | 2.8860 | 158.7150 | | 1.8679 | 9.375 | 300 | 2.8342 | 143.7977 | | 1.1096 | 12.5 | 400 | 3.0283 | 167.7163 | | 0.563 | 15.625 | 500 | 3.2773 | 167.3982 | | 0.2032 | 18.75 | 600 | 3.4815 | 167.4618 | | 0.0899 | 21.875 | 700 | 3.6164 | 151.9720 | | 0.0431 | 25.0 | 800 | 3.7659 | 154.4211 | | 0.0262 | 28.125 | 900 | 3.8327 | 188.4860 | | 0.0264 | 31.25 | 1000 | 3.8547 | 173.1234 | | 0.0118 | 34.375 | 1100 | 3.9458 | 184.9237 | | 0.0076 | 37.5 | 1200 | 4.0480 | 178.3079 | | 0.0036 | 40.625 | 1300 | 4.1518 | 159.7964 | | 0.0014 | 43.75 | 1400 | 4.1739 | 164.6310 | | 0.0011 | 46.875 | 1500 | 4.2014 | 173.6641 | | 0.001 | 50.0 | 1600 | 4.2262 | 147.2646 | | 0.001 | 53.125 | 1700 | 4.2510 | 159.1921 | | 0.0009 | 56.25 | 1800 | 4.2570 | 168.0025 | | 0.0009 | 59.375 | 1900 | 4.2650 | 166.7621 | | 0.0008 | 62.5 | 2000 | 4.2685 | 166.6349 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1