File size: 39,695 Bytes
6f8f57f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:378558
- loss:MultipleNegativesRankingLoss
base_model: intfloat/e5-base-v2
widget:
- source_sentence: Is intraoperative ketorolac an effective substitute for fentanyl
    in children undergoing outpatient adenotonsillectomy?
  sentences:
  - Ketorolac showed no advantage over fentanyl in reducing the incidence of PONV
    in children undergoing ADLAT.
  - The patients with IgAN and their first relatives showed significant higher Gal
    deficient IgA1 level than healthy controls, whereas patients spouses were the
    same as healthy controls. It can be suggested that the Gal deficient IgA1 might
    be inherited in Chinese patients with IgAN.
  - Our results indicated that triptolide enhanced and enriched the stemness in the
    PDAC cell lines at a low dose of 12.5 nM, but also resulted in the regression
    of tumors derived from these cells.
- source_sentence: Is task specific fall prevention training effective for warfighters
    with transtibial amputations?
  sentences:
  - These results indicate that task specific fall prevention training is an effective
    rehabilitation method to reduce falls in persons with lower extremity transtibial
    amputations.
  - Don t press on the eye. For pain, give acetaminophen Tylenol . Don t give aspirin
    or ibuprofen Advil, Motrin , because they can increase bleeding.
  - Dermatophytes Trichophyton skin ,hair, ,nail Tri all Three Microsporum skin, hair
    My head on head we have skin and hair Epidermophyton skin, nails
- source_sentence: Left horn of sinus venosus forms
  sentences:
  - Ki 67 expression is predictive of prognosis, and our prognostic model may become
    a useful tool for predicting prognosis in patients with stage I II extranodal
    NK T cell lymphoma, nasal type.
  - Evidence described here suggests that IFN λ is a good candidate inhibitor of viral
    replication in dengue infection. Mechanisms for the cellular and organismal interplay
    between DENV and IFN λ need to be further studied as they could provide insights
    into strategies to treat this disease. Furthermore, we report a novel epithelial
    model to study dengue infection in vitro.
  - Ans. A Coronary sinusRef Netter s Atlas of Human Embryology 2012 ed. pg. 96Heart
    tube embryonic derivativesembryonic structureGives rise to Proximal 1 3rd of bulbus
    cordisPrimitive trabeculated left ventricle Middle 1 3rd of bulbus cordisRight
    and left ventricular outflow tract Distal 1 3rd of bulbus cordis truncus arteriosus
    Ascending aorta and pulmonary trunk Left horn of sinus venosusCoronary sinus Right
    horn of sinus venosusSmooth part of right atrium Right common cardinal nerve and
    right anterior cardinal nerveSVC superior vena cava
- source_sentence: Is implementation of national diabetes retinal screening programme
    associated with a lower proportion of patients referred to ophthalmology?
  sentences:
  - Introduction of a systematic retinal screening programme can reduce the proportion
    of patients referred to the ophthalmology clinic, and use ophthalmology services
    more efficiently.
  - A Obesity Medications for the treatment of obesity can be classified as catecholaminergic
    or serotonergic. Catecholaminergic medications include Amphetamines with high
    abuse potential The Non Amphetamine schedule IV appetite suppressants Phentermine,
    Diethyl propion Mazindol. The September 1997 withdrawal from the market of Flenfluramine
    Defenfluramine has made true serotonergic appetite medications unavailable. The
    SSRI antidepressants, E.g.., Fluoxetine Setraline, also have serotonergic activity
    but are not approved by the FDA for weight loss.
  - A i.e. Protein linked with glycosidic bond
- source_sentence: Does amyloid peptide regulate calcium homoeostasis and arrhythmogenesis
    in pulmonary vein cardiomyocytes?
  sentences:
  - Hydroxy ethyl methaacrylate is a soft, flexible, water absorbing, plastic used
    to make soft contact lenses. It is a polymer of 2 hydroxyethyl methacrylate HEMA
    , a clear liquid component. Hard contact lenses are made from polymethyl methacrylate
    PMMA and Silicon.
  - Beta carotene has become popular in part because it s an antioxidant a substance
    that may protect cells from damage. A number of studies show that people who eat
    lots of fruits and vegetables that are rich in beta carotene and other vitamins
    and minerals have a lower risk of some cancers and heart disease. However, so
    far studies have not found that beta carotene supplements have the same health
    benefits as foods.
  -  25 35 has direct electrophysiological effects on PV cardiomyocytes.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: MPNet base trained on AllNLI triplets
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: eval dataset
      type: eval-dataset
    metrics:
    - type: cosine_accuracy
      value: 0.9937447168216399
      name: Cosine Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: test dataset
      type: test-dataset
    metrics:
    - type: cosine_accuracy
      value: 0.9964285714285714
      name: Cosine Accuracy
---

# MPNet base trained on AllNLI triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision 1c644c92ad3ba1efdad3f1451a637716616a20e8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Does amyloid peptide regulate calcium homoeostasis and arrhythmogenesis in pulmonary vein cardiomyocytes?',
    'Aβ 25 35 has direct electrophysiological effects on PV cardiomyocytes.',
    'Beta carotene has become popular in part because it s an antioxidant a substance that may protect cells from damage. A number of studies show that people who eat lots of fruits and vegetables that are rich in beta carotene and other vitamins and minerals have a lower risk of some cancers and heart disease. However, so far studies have not found that beta carotene supplements have the same health benefits as foods.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Datasets: `eval-dataset` and `test-dataset`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | eval-dataset | test-dataset |
|:--------------------|:-------------|:-------------|
| **cosine_accuracy** | **0.9937**   | **0.9964**   |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 378,558 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | label                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                         |
  | details | <ul><li>min: 6 tokens</li><li>mean: 24.72 tokens</li><li>max: 147 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 88.11 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                           | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | label            |
  |:--------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Does tolbutamide alter glucose transport and metabolism in the embryonic mouse heart?</code>                  | <code>Tolbutamide stimulates glucose uptake and metabolism in the embryonic heart, as occurs in adult extra pancreatic tissues. Glut 1 and HKI, but not GRP78, are likely involved in tolbutamide induced cardiac dysmorphogenesis.</code>                                                                                                                                                                                                                                               | <code>1.0</code> |
  | <code>Do flk1 cells derived from mouse embryonic stem cells reconstitute hematopoiesis in vivo in SCID mice?</code> | <code>The Flk1 hematopoietic cells derived from ES cells reconstitute hematopoiesis in vivo and may become an alternative donor source for bone marrow transplantation.</code>                                                                                                                                                                                                                                                                                                           | <code>1.0</code> |
  | <code>Does systematic aging of degradable nanosuspension ameliorate vibrating mesh nebulizer performance?</code>    | <code>Nebulization of purified nanosuspensions resulted in droplet diameters of 7.0 µm. However, electrolyte supplementation and storage, which led to an increase in sample conductivity 10 20 µS cm , were capable of providing smaller droplet diameters during vibrating mesh nebulization 5.0 µm . No relevant change of NP properties i.e. size, morphology, remaining mass and molecular weight of the employed polymer was observed when incubated at 22 C for two weeks.</code> | <code>1.0</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 47,320 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | label                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                         |
  | details | <ul><li>min: 5 tokens</li><li>mean: 24.45 tokens</li><li>max: 253 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 87.68 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                            | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | label            |
  |:-------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Does thrombospondin 2 gene silencing in human aortic smooth muscle cells improve cell attachment?</code>                       | <code>siRNA mediated TSP 2 silencing of human aortic HAoSMCs improved cell attachment but had no effect on cell migration or proliferation. The effect on cell attachment was unrelated to changes in MMP activity.</code>                                                                                                                                                                                                                                                                                                                                                                                                        | <code>1.0</code> |
  | <code>What can you do to manage polycythemia vera?</code>                                                                            | <code>Most people with polycythemia vera take low dose aspirin. There are a lot of ways you can keep yourself comfortable and as healthy as possible Don t smoke or chew tobacco. Tobacco makes blood vessels narrow, which can make blood clots more likely. Get some light exercise, such as walking, to help your circulation and keep your heart healthy. Do leg and ankle exercises to stop clots from forming in the veins of your legs. Your doctor or a physical therapist can show you how. Bathe or shower in cool water if warm water makes you itch. Keep your skin moist with lotion, and try not to scratch.</code> | <code>1.0</code> |
  | <code>Is weekly nab paclitaxel safe and effective in 65 years old patients with metastatic breast cancer a post hoc analysis?</code> | <code>Weekly nab paclitaxel was safe and more efficacious compared with the q3w schedule and with solvent based taxanes in older patients with MBC.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>1.0</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `do_predict`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: True
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step     | Training Loss | Validation Loss | eval-dataset_cosine_accuracy | test-dataset_cosine_accuracy |
|:----------:|:--------:|:-------------:|:---------------:|:----------------------------:|:----------------------------:|
| 0          | 0        | -             | -               | 0.9813                       | -                            |
| 0.0085     | 50       | 1.8471        | -               | -                            | -                            |
| 0.0169     | 100      | 0.5244        | -               | -                            | -                            |
| 0.0254     | 150      | 0.2175        | -               | -                            | -                            |
| 0.0338     | 200      | 0.1392        | -               | -                            | -                            |
| 0.0423     | 250      | 0.1437        | -               | -                            | -                            |
| 0.0507     | 300      | 0.142         | -               | -                            | -                            |
| 0.0592     | 350      | 0.1295        | -               | -                            | -                            |
| 0.0676     | 400      | 0.1238        | -               | -                            | -                            |
| 0.0761     | 450      | 0.14          | -               | -                            | -                            |
| 0.0845     | 500      | 0.1173        | 0.1006          | 0.9931                       | -                            |
| 0.0930     | 550      | 0.1236        | -               | -                            | -                            |
| 0.1014     | 600      | 0.1127        | -               | -                            | -                            |
| 0.1099     | 650      | 0.1338        | -               | -                            | -                            |
| 0.1183     | 700      | 0.1071        | -               | -                            | -                            |
| 0.1268     | 750      | 0.1149        | -               | -                            | -                            |
| 0.1352     | 800      | 0.1072        | -               | -                            | -                            |
| 0.1437     | 850      | 0.1117        | -               | -                            | -                            |
| 0.1522     | 900      | 0.1087        | -               | -                            | -                            |
| 0.1606     | 950      | 0.1242        | -               | -                            | -                            |
| **0.1691** | **1000** | **0.1039**    | **0.091**       | **0.9965**                   | **-**                        |
| 0.1775     | 1050     | 0.1043        | -               | -                            | -                            |
| 0.1860     | 1100     | 0.1193        | -               | -                            | -                            |
| 0.1944     | 1150     | 0.1028        | -               | -                            | -                            |
| 0.2029     | 1200     | 0.1027        | -               | -                            | -                            |
| 0.2113     | 1250     | 0.1075        | -               | -                            | -                            |
| 0.2198     | 1300     | 0.1177        | -               | -                            | -                            |
| 0.2282     | 1350     | 0.0937        | -               | -                            | -                            |
| 0.2367     | 1400     | 0.1095        | -               | -                            | -                            |
| 0.2451     | 1450     | 0.1054        | -               | -                            | -                            |
| 0.2536     | 1500     | 0.1003        | 0.0798          | 0.9958                       | -                            |
| 0.2620     | 1550     | 0.0952        | -               | -                            | -                            |
| 0.2705     | 1600     | 0.1028        | -               | -                            | -                            |
| 0.2790     | 1650     | 0.0988        | -               | -                            | -                            |
| 0.2874     | 1700     | 0.0887        | -               | -                            | -                            |
| 0.2959     | 1750     | 0.1027        | -               | -                            | -                            |
| 0.3043     | 1800     | 0.0937        | -               | -                            | -                            |
| 0.3128     | 1850     | 0.1031        | -               | -                            | -                            |
| 0.3212     | 1900     | 0.0857        | -               | -                            | -                            |
| 0.3297     | 1950     | 0.094         | -               | -                            | -                            |
| 0.3381     | 2000     | 0.1044        | 0.0721          | 0.9954                       | -                            |
| 0.3466     | 2050     | 0.0829        | -               | -                            | -                            |
| 0.3550     | 2100     | 0.0934        | -               | -                            | -                            |
| 0.3635     | 2150     | 0.0785        | -               | -                            | -                            |
| 0.3719     | 2200     | 0.0938        | -               | -                            | -                            |
| 0.3804     | 2250     | 0.0885        | -               | -                            | -                            |
| 0.3888     | 2300     | 0.0907        | -               | -                            | -                            |
| 0.3973     | 2350     | 0.0911        | -               | -                            | -                            |
| 0.4057     | 2400     | 0.0891        | -               | -                            | -                            |
| 0.4142     | 2450     | 0.0798        | -               | -                            | -                            |
| 0.4227     | 2500     | 0.0856        | 0.0655          | 0.9935                       | -                            |
| 0.4311     | 2550     | 0.0925        | -               | -                            | -                            |
| 0.4396     | 2600     | 0.0778        | -               | -                            | -                            |
| 0.4480     | 2650     | 0.0871        | -               | -                            | -                            |
| 0.4565     | 2700     | 0.0769        | -               | -                            | -                            |
| 0.4649     | 2750     | 0.0815        | -               | -                            | -                            |
| 0.4734     | 2800     | 0.0697        | -               | -                            | -                            |
| 0.4818     | 2850     | 0.0714        | -               | -                            | -                            |
| 0.4903     | 2900     | 0.0788        | -               | -                            | -                            |
| 0.4987     | 2950     | 0.0772        | -               | -                            | -                            |
| 0.5072     | 3000     | 0.0825        | 0.0618          | 0.9917                       | -                            |
| 0.5156     | 3050     | 0.0742        | -               | -                            | -                            |
| 0.5241     | 3100     | 0.0784        | -               | -                            | -                            |
| 0.5325     | 3150     | 0.0697        | -               | -                            | -                            |
| 0.5410     | 3200     | 0.0791        | -               | -                            | -                            |
| 0.5495     | 3250     | 0.0657        | -               | -                            | -                            |
| 0.5579     | 3300     | 0.0779        | -               | -                            | -                            |
| 0.5664     | 3350     | 0.0719        | -               | -                            | -                            |
| 0.5748     | 3400     | 0.0656        | -               | -                            | -                            |
| 0.5833     | 3450     | 0.0698        | -               | -                            | -                            |
| 0.5917     | 3500     | 0.0678        | 0.0578          | 0.9903                       | -                            |
| 0.6002     | 3550     | 0.0771        | -               | -                            | -                            |
| 0.6086     | 3600     | 0.0645        | -               | -                            | -                            |
| 0.6171     | 3650     | 0.078         | -               | -                            | -                            |
| 0.6255     | 3700     | 0.064         | -               | -                            | -                            |
| 0.6340     | 3750     | 0.0691        | -               | -                            | -                            |
| 0.6424     | 3800     | 0.0634        | -               | -                            | -                            |
| 0.6509     | 3850     | 0.0732        | -               | -                            | -                            |
| 0.6593     | 3900     | 0.059         | -               | -                            | -                            |
| 0.6678     | 3950     | 0.0671        | -               | -                            | -                            |
| 0.6762     | 4000     | 0.0633        | 0.0552          | 0.9936                       | -                            |
| 0.6847     | 4050     | 0.0732        | -               | -                            | -                            |
| 0.6932     | 4100     | 0.0593        | -               | -                            | -                            |
| 0.7016     | 4150     | 0.0639        | -               | -                            | -                            |
| 0.7101     | 4200     | 0.0672        | -               | -                            | -                            |
| 0.7185     | 4250     | 0.0604        | -               | -                            | -                            |
| 0.7270     | 4300     | 0.0666        | -               | -                            | -                            |
| 0.7354     | 4350     | 0.0594        | -               | -                            | -                            |
| 0.7439     | 4400     | 0.0783        | -               | -                            | -                            |
| 0.7523     | 4450     | 0.0654        | -               | -                            | -                            |
| 0.7608     | 4500     | 0.0596        | 0.0520          | 0.9937                       | -                            |
| 0.7692     | 4550     | 0.0654        | -               | -                            | -                            |
| 0.7777     | 4600     | 0.0511        | -               | -                            | -                            |
| 0.7861     | 4650     | 0.0641        | -               | -                            | -                            |
| 0.7946     | 4700     | 0.0609        | -               | -                            | -                            |
| 0.8030     | 4750     | 0.0591        | -               | -                            | -                            |
| 0.8115     | 4800     | 0.0496        | -               | -                            | -                            |
| 0.8199     | 4850     | 0.0624        | -               | -                            | -                            |
| 0.8284     | 4900     | 0.0639        | -               | -                            | -                            |
| 0.8369     | 4950     | 0.056         | -               | -                            | -                            |
| 0.8453     | 5000     | 0.0641        | 0.0487          | 0.9947                       | -                            |
| 0.8538     | 5050     | 0.0608        | -               | -                            | -                            |
| 0.8622     | 5100     | 0.0725        | -               | -                            | -                            |
| 0.8707     | 5150     | 0.055         | -               | -                            | -                            |
| 0.8791     | 5200     | 0.0556        | -               | -                            | -                            |
| 0.8876     | 5250     | 0.0489        | -               | -                            | -                            |
| 0.8960     | 5300     | 0.0513        | -               | -                            | -                            |
| 0.9045     | 5350     | 0.0493        | -               | -                            | -                            |
| 0.9129     | 5400     | 0.0574        | -               | -                            | -                            |
| 0.9214     | 5450     | 0.0665        | -               | -                            | -                            |
| 0.9298     | 5500     | 0.0588        | 0.0475          | 0.9937                       | -                            |
| 0.9383     | 5550     | 0.0557        | -               | -                            | -                            |
| 0.9467     | 5600     | 0.0497        | -               | -                            | -                            |
| 0.9552     | 5650     | 0.0592        | -               | -                            | -                            |
| 0.9637     | 5700     | 0.0526        | -               | -                            | -                            |
| 0.9721     | 5750     | 0.0683        | -               | -                            | -                            |
| 0.9806     | 5800     | 0.0588        | -               | -                            | -                            |
| 0.9890     | 5850     | 0.0541        | -               | -                            | -                            |
| 0.9975     | 5900     | 0.0636        | -               | -                            | -                            |
| 1.0        | 5915     | -             | -               | -                            | 0.9964                       |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->