File size: 1,658 Bytes
c2b3ba3 958a037 c2b3ba3 958a037 3df25d0 958a037 c2b3ba3 3df25d0 c2b3ba3 958a037 c2b3ba3 3df25d0 958a037 3df25d0 c2b3ba3 3df25d0 c2b3ba3 3df25d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: transformers
license: bsd-3-clause
base_model: Salesforce/blip-image-captioning-large
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: blip-image-captioning-large-shyam
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# blip-image-captioning-large-shyam
This model is a fine-tuned version of [Salesforce/blip-image-captioning-large](https://huggingface.co/Salesforce/blip-image-captioning-large) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2169
- Wer Score: 0.9091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 6.7457 | 5.0 | 50 | 3.7819 | 0.9091 |
| 1.9042 | 10.0 | 100 | 0.6590 | 0.9091 |
| 0.3114 | 15.0 | 150 | 0.2169 | 0.9091 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|