File size: 10,645 Bytes
883b601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: best_model-sst-2-32-87
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# best_model-sst-2-32-87

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0406
- Accuracy: 0.8438

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 2    | 1.2928          | 0.8438   |
| No log        | 2.0   | 4    | 1.2923          | 0.8438   |
| No log        | 3.0   | 6    | 1.2917          | 0.8438   |
| No log        | 4.0   | 8    | 1.2902          | 0.8438   |
| 0.7235        | 5.0   | 10   | 1.2884          | 0.8438   |
| 0.7235        | 6.0   | 12   | 1.2856          | 0.8438   |
| 0.7235        | 7.0   | 14   | 1.2829          | 0.8438   |
| 0.7235        | 8.0   | 16   | 1.2800          | 0.8281   |
| 0.7235        | 9.0   | 18   | 1.2769          | 0.8281   |
| 0.5899        | 10.0  | 20   | 1.2742          | 0.8281   |
| 0.5899        | 11.0  | 22   | 1.2710          | 0.8281   |
| 0.5899        | 12.0  | 24   | 1.2662          | 0.8281   |
| 0.5899        | 13.0  | 26   | 1.2590          | 0.8281   |
| 0.5899        | 14.0  | 28   | 1.2466          | 0.8281   |
| 0.6318        | 15.0  | 30   | 1.2287          | 0.8281   |
| 0.6318        | 16.0  | 32   | 1.2138          | 0.8281   |
| 0.6318        | 17.0  | 34   | 1.2024          | 0.8281   |
| 0.6318        | 18.0  | 36   | 1.1924          | 0.8281   |
| 0.6318        | 19.0  | 38   | 1.1838          | 0.8281   |
| 0.4743        | 20.0  | 40   | 1.1729          | 0.8281   |
| 0.4743        | 21.0  | 42   | 1.1591          | 0.8281   |
| 0.4743        | 22.0  | 44   | 1.1527          | 0.8281   |
| 0.4743        | 23.0  | 46   | 1.1459          | 0.8281   |
| 0.4743        | 24.0  | 48   | 1.1407          | 0.8281   |
| 0.3414        | 25.0  | 50   | 1.1351          | 0.8281   |
| 0.3414        | 26.0  | 52   | 1.1305          | 0.8281   |
| 0.3414        | 27.0  | 54   | 1.1230          | 0.8281   |
| 0.3414        | 28.0  | 56   | 1.1087          | 0.8281   |
| 0.3414        | 29.0  | 58   | 1.0831          | 0.8281   |
| 0.3141        | 30.0  | 60   | 1.0555          | 0.8281   |
| 0.3141        | 31.0  | 62   | 1.0313          | 0.8438   |
| 0.3141        | 32.0  | 64   | 1.0141          | 0.8594   |
| 0.3141        | 33.0  | 66   | 1.0063          | 0.8438   |
| 0.3141        | 34.0  | 68   | 0.9990          | 0.8438   |
| 0.1594        | 35.0  | 70   | 0.9916          | 0.8438   |
| 0.1594        | 36.0  | 72   | 0.9884          | 0.8438   |
| 0.1594        | 37.0  | 74   | 0.9922          | 0.8438   |
| 0.1594        | 38.0  | 76   | 1.0013          | 0.8281   |
| 0.1594        | 39.0  | 78   | 1.0097          | 0.8281   |
| 0.1018        | 40.0  | 80   | 1.0209          | 0.8281   |
| 0.1018        | 41.0  | 82   | 1.0341          | 0.8281   |
| 0.1018        | 42.0  | 84   | 1.0352          | 0.8281   |
| 0.1018        | 43.0  | 86   | 1.0284          | 0.8281   |
| 0.1018        | 44.0  | 88   | 1.0236          | 0.8281   |
| 0.0404        | 45.0  | 90   | 1.0214          | 0.8438   |
| 0.0404        | 46.0  | 92   | 1.0237          | 0.8594   |
| 0.0404        | 47.0  | 94   | 1.0233          | 0.875    |
| 0.0404        | 48.0  | 96   | 1.0223          | 0.875    |
| 0.0404        | 49.0  | 98   | 1.0187          | 0.875    |
| 0.0052        | 50.0  | 100  | 1.0160          | 0.8594   |
| 0.0052        | 51.0  | 102  | 1.0134          | 0.8594   |
| 0.0052        | 52.0  | 104  | 1.0107          | 0.8438   |
| 0.0052        | 53.0  | 106  | 1.0083          | 0.8438   |
| 0.0052        | 54.0  | 108  | 1.0061          | 0.8438   |
| 0.0003        | 55.0  | 110  | 1.0043          | 0.8438   |
| 0.0003        | 56.0  | 112  | 1.0016          | 0.8438   |
| 0.0003        | 57.0  | 114  | 0.9994          | 0.8438   |
| 0.0003        | 58.0  | 116  | 0.9955          | 0.8438   |
| 0.0003        | 59.0  | 118  | 0.9902          | 0.8438   |
| 0.0003        | 60.0  | 120  | 0.9852          | 0.8438   |
| 0.0003        | 61.0  | 122  | 0.9806          | 0.8438   |
| 0.0003        | 62.0  | 124  | 0.9791          | 0.8438   |
| 0.0003        | 63.0  | 126  | 0.9794          | 0.8438   |
| 0.0003        | 64.0  | 128  | 0.9802          | 0.8438   |
| 0.0003        | 65.0  | 130  | 0.9809          | 0.8438   |
| 0.0003        | 66.0  | 132  | 0.9816          | 0.8438   |
| 0.0003        | 67.0  | 134  | 0.9821          | 0.8438   |
| 0.0003        | 68.0  | 136  | 0.9779          | 0.8438   |
| 0.0003        | 69.0  | 138  | 0.9746          | 0.8281   |
| 0.0003        | 70.0  | 140  | 0.9719          | 0.8281   |
| 0.0003        | 71.0  | 142  | 0.9699          | 0.8281   |
| 0.0003        | 72.0  | 144  | 0.9684          | 0.8438   |
| 0.0003        | 73.0  | 146  | 0.9673          | 0.8438   |
| 0.0003        | 74.0  | 148  | 0.9665          | 0.8438   |
| 0.0002        | 75.0  | 150  | 0.9660          | 0.8438   |
| 0.0002        | 76.0  | 152  | 0.9657          | 0.8438   |
| 0.0002        | 77.0  | 154  | 0.9605          | 0.8438   |
| 0.0002        | 78.0  | 156  | 0.9545          | 0.8438   |
| 0.0002        | 79.0  | 158  | 0.9485          | 0.8438   |
| 0.0004        | 80.0  | 160  | 0.9431          | 0.8438   |
| 0.0004        | 81.0  | 162  | 0.9384          | 0.8438   |
| 0.0004        | 82.0  | 164  | 0.9349          | 0.8438   |
| 0.0004        | 83.0  | 166  | 0.9324          | 0.8438   |
| 0.0004        | 84.0  | 168  | 0.9309          | 0.8438   |
| 0.0002        | 85.0  | 170  | 0.9309          | 0.8438   |
| 0.0002        | 86.0  | 172  | 0.9313          | 0.8438   |
| 0.0002        | 87.0  | 174  | 0.9331          | 0.8438   |
| 0.0002        | 88.0  | 176  | 0.9357          | 0.8438   |
| 0.0002        | 89.0  | 178  | 0.9380          | 0.8438   |
| 0.0002        | 90.0  | 180  | 0.9404          | 0.8438   |
| 0.0002        | 91.0  | 182  | 0.9428          | 0.8438   |
| 0.0002        | 92.0  | 184  | 0.9449          | 0.8438   |
| 0.0002        | 93.0  | 186  | 0.9472          | 0.8438   |
| 0.0002        | 94.0  | 188  | 0.9495          | 0.8438   |
| 0.0002        | 95.0  | 190  | 0.9521          | 0.8438   |
| 0.0002        | 96.0  | 192  | 0.9545          | 0.8438   |
| 0.0002        | 97.0  | 194  | 0.9576          | 0.8438   |
| 0.0002        | 98.0  | 196  | 0.9619          | 0.8438   |
| 0.0002        | 99.0  | 198  | 0.9658          | 0.8438   |
| 0.0002        | 100.0 | 200  | 0.9692          | 0.8438   |
| 0.0002        | 101.0 | 202  | 0.9723          | 0.8438   |
| 0.0002        | 102.0 | 204  | 0.9748          | 0.8438   |
| 0.0002        | 103.0 | 206  | 0.9781          | 0.8438   |
| 0.0002        | 104.0 | 208  | 0.9808          | 0.8438   |
| 0.0001        | 105.0 | 210  | 0.9832          | 0.8438   |
| 0.0001        | 106.0 | 212  | 0.9856          | 0.8438   |
| 0.0001        | 107.0 | 214  | 0.9884          | 0.8438   |
| 0.0001        | 108.0 | 216  | 0.9906          | 0.8438   |
| 0.0001        | 109.0 | 218  | 0.9903          | 0.8438   |
| 0.0002        | 110.0 | 220  | 0.9888          | 0.8438   |
| 0.0002        | 111.0 | 222  | 0.9874          | 0.8438   |
| 0.0002        | 112.0 | 224  | 0.9863          | 0.8438   |
| 0.0002        | 113.0 | 226  | 0.9854          | 0.8438   |
| 0.0002        | 114.0 | 228  | 0.9848          | 0.8438   |
| 0.0001        | 115.0 | 230  | 0.9878          | 0.8438   |
| 0.0001        | 116.0 | 232  | 0.9905          | 0.8438   |
| 0.0001        | 117.0 | 234  | 0.9926          | 0.8438   |
| 0.0001        | 118.0 | 236  | 0.9952          | 0.8438   |
| 0.0001        | 119.0 | 238  | 1.0010          | 0.8438   |
| 0.0001        | 120.0 | 240  | 1.0054          | 0.8438   |
| 0.0001        | 121.0 | 242  | 1.0086          | 0.8438   |
| 0.0001        | 122.0 | 244  | 1.0124          | 0.8438   |
| 0.0001        | 123.0 | 246  | 1.0155          | 0.8438   |
| 0.0001        | 124.0 | 248  | 1.0180          | 0.8438   |
| 0.0001        | 125.0 | 250  | 1.0201          | 0.8438   |
| 0.0001        | 126.0 | 252  | 1.0219          | 0.8438   |
| 0.0001        | 127.0 | 254  | 1.0235          | 0.8438   |
| 0.0001        | 128.0 | 256  | 1.0249          | 0.8438   |
| 0.0001        | 129.0 | 258  | 1.0261          | 0.8438   |
| 0.0001        | 130.0 | 260  | 1.0271          | 0.8438   |
| 0.0001        | 131.0 | 262  | 1.0279          | 0.8438   |
| 0.0001        | 132.0 | 264  | 1.0287          | 0.8438   |
| 0.0001        | 133.0 | 266  | 1.0293          | 0.8438   |
| 0.0001        | 134.0 | 268  | 1.0297          | 0.8438   |
| 0.0001        | 135.0 | 270  | 1.0301          | 0.8438   |
| 0.0001        | 136.0 | 272  | 1.0305          | 0.8438   |
| 0.0001        | 137.0 | 274  | 1.0309          | 0.8438   |
| 0.0001        | 138.0 | 276  | 1.0314          | 0.8438   |
| 0.0001        | 139.0 | 278  | 1.0324          | 0.8438   |
| 0.0001        | 140.0 | 280  | 1.0339          | 0.8438   |
| 0.0001        | 141.0 | 282  | 1.0352          | 0.8438   |
| 0.0001        | 142.0 | 284  | 1.0364          | 0.8438   |
| 0.0001        | 143.0 | 286  | 1.0373          | 0.8438   |
| 0.0001        | 144.0 | 288  | 1.0381          | 0.8438   |
| 0.0001        | 145.0 | 290  | 1.0388          | 0.8438   |
| 0.0001        | 146.0 | 292  | 1.0394          | 0.8438   |
| 0.0001        | 147.0 | 294  | 1.0401          | 0.8438   |
| 0.0001        | 148.0 | 296  | 1.0404          | 0.8438   |
| 0.0001        | 149.0 | 298  | 1.0404          | 0.8438   |
| 0.0001        | 150.0 | 300  | 1.0406          | 0.8438   |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3