File size: 10,647 Bytes
ae55441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: best_model-sst-2-64-100
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# best_model-sst-2-64-100

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9480
- Accuracy: 0.8906

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 4    | 0.8613          | 0.9141   |
| No log        | 2.0   | 8    | 0.8613          | 0.9141   |
| 0.6496        | 3.0   | 12   | 0.8614          | 0.9141   |
| 0.6496        | 4.0   | 16   | 0.8614          | 0.9141   |
| 0.6483        | 5.0   | 20   | 0.8596          | 0.9141   |
| 0.6483        | 6.0   | 24   | 0.8575          | 0.9141   |
| 0.6483        | 7.0   | 28   | 0.8557          | 0.9141   |
| 0.6867        | 8.0   | 32   | 0.8528          | 0.9141   |
| 0.6867        | 9.0   | 36   | 0.8506          | 0.9141   |
| 0.3821        | 10.0  | 40   | 0.8542          | 0.9062   |
| 0.3821        | 11.0  | 44   | 0.8721          | 0.8984   |
| 0.3821        | 12.0  | 48   | 0.8877          | 0.8984   |
| 0.4452        | 13.0  | 52   | 0.8920          | 0.8984   |
| 0.4452        | 14.0  | 56   | 0.8952          | 0.8984   |
| 0.3224        | 15.0  | 60   | 0.8920          | 0.9062   |
| 0.3224        | 16.0  | 64   | 0.8833          | 0.9062   |
| 0.3224        | 17.0  | 68   | 0.8727          | 0.9062   |
| 0.2699        | 18.0  | 72   | 0.8284          | 0.8984   |
| 0.2699        | 19.0  | 76   | 0.7829          | 0.9062   |
| 0.1873        | 20.0  | 80   | 0.7713          | 0.9062   |
| 0.1873        | 21.0  | 84   | 0.7646          | 0.8984   |
| 0.1873        | 22.0  | 88   | 0.7517          | 0.8984   |
| 0.1282        | 23.0  | 92   | 0.7379          | 0.9062   |
| 0.1282        | 24.0  | 96   | 0.7295          | 0.9062   |
| 0.0438        | 25.0  | 100  | 0.7243          | 0.8984   |
| 0.0438        | 26.0  | 104  | 0.7038          | 0.9141   |
| 0.0438        | 27.0  | 108  | 0.6994          | 0.9219   |
| 0.0154        | 28.0  | 112  | 0.6997          | 0.9062   |
| 0.0154        | 29.0  | 116  | 0.7184          | 0.8984   |
| 0.0019        | 30.0  | 120  | 0.7601          | 0.9062   |
| 0.0019        | 31.0  | 124  | 0.7739          | 0.9062   |
| 0.0019        | 32.0  | 128  | 0.7854          | 0.9062   |
| 0.0003        | 33.0  | 132  | 0.7934          | 0.9062   |
| 0.0003        | 34.0  | 136  | 0.7945          | 0.9062   |
| 0.0002        | 35.0  | 140  | 0.7896          | 0.9062   |
| 0.0002        | 36.0  | 144  | 0.7711          | 0.9062   |
| 0.0002        | 37.0  | 148  | 0.7503          | 0.9062   |
| 0.0004        | 38.0  | 152  | 0.7436          | 0.9062   |
| 0.0004        | 39.0  | 156  | 0.7464          | 0.9062   |
| 0.0001        | 40.0  | 160  | 0.7492          | 0.9062   |
| 0.0001        | 41.0  | 164  | 0.7990          | 0.9062   |
| 0.0001        | 42.0  | 168  | 0.8244          | 0.9062   |
| 0.0059        | 43.0  | 172  | 0.8377          | 0.9062   |
| 0.0059        | 44.0  | 176  | 0.8496          | 0.9062   |
| 0.0001        | 45.0  | 180  | 0.8582          | 0.9062   |
| 0.0001        | 46.0  | 184  | 0.8646          | 0.9062   |
| 0.0001        | 47.0  | 188  | 0.8286          | 0.9062   |
| 0.0005        | 48.0  | 192  | 0.8002          | 0.9062   |
| 0.0005        | 49.0  | 196  | 0.7854          | 0.9062   |
| 0.0001        | 50.0  | 200  | 0.7691          | 0.9062   |
| 0.0001        | 51.0  | 204  | 0.7594          | 0.9062   |
| 0.0001        | 52.0  | 208  | 0.7618          | 0.9062   |
| 0.0003        | 53.0  | 212  | 0.8175          | 0.9062   |
| 0.0003        | 54.0  | 216  | 0.8539          | 0.9062   |
| 0.0001        | 55.0  | 220  | 0.8737          | 0.9062   |
| 0.0001        | 56.0  | 224  | 0.8661          | 0.9062   |
| 0.0001        | 57.0  | 228  | 0.8398          | 0.9062   |
| 0.0038        | 58.0  | 232  | 0.8162          | 0.9062   |
| 0.0038        | 59.0  | 236  | 0.7946          | 0.9062   |
| 0.0001        | 60.0  | 240  | 0.7866          | 0.9062   |
| 0.0001        | 61.0  | 244  | 0.7776          | 0.9141   |
| 0.0001        | 62.0  | 248  | 0.7781          | 0.9141   |
| 0.0001        | 63.0  | 252  | 0.7963          | 0.9062   |
| 0.0001        | 64.0  | 256  | 0.8099          | 0.9062   |
| 0.0           | 65.0  | 260  | 0.8196          | 0.9062   |
| 0.0           | 66.0  | 264  | 0.8284          | 0.9062   |
| 0.0           | 67.0  | 268  | 0.8880          | 0.9062   |
| 0.0045        | 68.0  | 272  | 0.9217          | 0.9062   |
| 0.0045        | 69.0  | 276  | 0.9374          | 0.8984   |
| 0.0082        | 70.0  | 280  | 0.9364          | 0.9062   |
| 0.0082        | 71.0  | 284  | 0.8651          | 0.9062   |
| 0.0082        | 72.0  | 288  | 0.7849          | 0.8984   |
| 0.0003        | 73.0  | 292  | 0.7981          | 0.8984   |
| 0.0003        | 74.0  | 296  | 0.7808          | 0.9141   |
| 0.021         | 75.0  | 300  | 0.8438          | 0.9062   |
| 0.021         | 76.0  | 304  | 0.8882          | 0.8984   |
| 0.021         | 77.0  | 308  | 0.9214          | 0.8984   |
| 0.0001        | 78.0  | 312  | 0.9396          | 0.8984   |
| 0.0001        | 79.0  | 316  | 0.9493          | 0.8984   |
| 0.0           | 80.0  | 320  | 0.9549          | 0.8984   |
| 0.0           | 81.0  | 324  | 0.9466          | 0.8984   |
| 0.0           | 82.0  | 328  | 0.9041          | 0.8984   |
| 0.0001        | 83.0  | 332  | 0.8993          | 0.8984   |
| 0.0001        | 84.0  | 336  | 0.9616          | 0.8984   |
| 0.0001        | 85.0  | 340  | 0.9844          | 0.8984   |
| 0.0001        | 86.0  | 344  | 0.9934          | 0.8906   |
| 0.0001        | 87.0  | 348  | 0.9999          | 0.8906   |
| 0.0001        | 88.0  | 352  | 0.9973          | 0.8906   |
| 0.0001        | 89.0  | 356  | 0.9943          | 0.8984   |
| 0.0           | 90.0  | 360  | 0.9929          | 0.8984   |
| 0.0           | 91.0  | 364  | 0.9921          | 0.8984   |
| 0.0           | 92.0  | 368  | 0.9915          | 0.8984   |
| 0.0           | 93.0  | 372  | 0.9916          | 0.8984   |
| 0.0           | 94.0  | 376  | 0.9924          | 0.8984   |
| 0.0           | 95.0  | 380  | 0.9930          | 0.8984   |
| 0.0           | 96.0  | 384  | 0.9936          | 0.8984   |
| 0.0           | 97.0  | 388  | 0.9940          | 0.8984   |
| 0.0           | 98.0  | 392  | 0.9946          | 0.8984   |
| 0.0           | 99.0  | 396  | 0.9950          | 0.8984   |
| 0.0006        | 100.0 | 400  | 0.9869          | 0.8984   |
| 0.0006        | 101.0 | 404  | 0.8625          | 0.8984   |
| 0.0006        | 102.0 | 408  | 0.7755          | 0.9219   |
| 0.0           | 103.0 | 412  | 0.7887          | 0.8984   |
| 0.0           | 104.0 | 416  | 0.7844          | 0.9062   |
| 0.0062        | 105.0 | 420  | 0.8504          | 0.8984   |
| 0.0062        | 106.0 | 424  | 0.9449          | 0.8984   |
| 0.0062        | 107.0 | 428  | 0.9568          | 0.8906   |
| 0.0           | 108.0 | 432  | 0.9504          | 0.8984   |
| 0.0           | 109.0 | 436  | 0.9700          | 0.8984   |
| 0.0           | 110.0 | 440  | 0.9875          | 0.8906   |
| 0.0           | 111.0 | 444  | 1.0002          | 0.8906   |
| 0.0           | 112.0 | 448  | 1.0095          | 0.8828   |
| 0.0           | 113.0 | 452  | 1.0156          | 0.8828   |
| 0.0           | 114.0 | 456  | 0.8995          | 0.8984   |
| 0.0144        | 115.0 | 460  | 0.8017          | 0.8984   |
| 0.0144        | 116.0 | 464  | 0.7774          | 0.9062   |
| 0.0144        | 117.0 | 468  | 0.7913          | 0.9062   |
| 0.0           | 118.0 | 472  | 0.8033          | 0.8984   |
| 0.0           | 119.0 | 476  | 0.8244          | 0.8906   |
| 0.0001        | 120.0 | 480  | 0.9148          | 0.8984   |
| 0.0001        | 121.0 | 484  | 1.0038          | 0.8828   |
| 0.0001        | 122.0 | 488  | 1.1128          | 0.875    |
| 0.0           | 123.0 | 492  | 1.1276          | 0.875    |
| 0.0           | 124.0 | 496  | 1.1209          | 0.8828   |
| 0.0           | 125.0 | 500  | 1.1161          | 0.8828   |
| 0.0           | 126.0 | 504  | 1.1119          | 0.8828   |
| 0.0           | 127.0 | 508  | 1.1037          | 0.8828   |
| 0.0           | 128.0 | 512  | 1.0644          | 0.8828   |
| 0.0           | 129.0 | 516  | 1.0175          | 0.875    |
| 0.0           | 130.0 | 520  | 0.9819          | 0.8828   |
| 0.0           | 131.0 | 524  | 0.9613          | 0.8906   |
| 0.0           | 132.0 | 528  | 0.9509          | 0.8906   |
| 0.0           | 133.0 | 532  | 0.9463          | 0.8906   |
| 0.0           | 134.0 | 536  | 0.9441          | 0.875    |
| 0.0           | 135.0 | 540  | 0.9432          | 0.875    |
| 0.0           | 136.0 | 544  | 0.9429          | 0.875    |
| 0.0           | 137.0 | 548  | 0.9429          | 0.8828   |
| 0.0           | 138.0 | 552  | 0.9430          | 0.8828   |
| 0.0           | 139.0 | 556  | 0.9432          | 0.8828   |
| 0.0           | 140.0 | 560  | 0.9434          | 0.8828   |
| 0.0           | 141.0 | 564  | 0.9436          | 0.8828   |
| 0.0           | 142.0 | 568  | 0.9438          | 0.8906   |
| 0.0           | 143.0 | 572  | 0.9439          | 0.8906   |
| 0.0           | 144.0 | 576  | 0.9448          | 0.8906   |
| 0.0           | 145.0 | 580  | 0.9461          | 0.8906   |
| 0.0           | 146.0 | 584  | 0.9470          | 0.8906   |
| 0.0           | 147.0 | 588  | 0.9476          | 0.8906   |
| 0.0           | 148.0 | 592  | 0.9478          | 0.8906   |
| 0.0           | 149.0 | 596  | 0.9480          | 0.8906   |
| 0.0           | 150.0 | 600  | 0.9480          | 0.8906   |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3